电子科技 ›› 2019, Vol. 32 ›› Issue (10): 13-16.doi: 10.16180/j.cnki.issn1007-7820.2019.10.003

• • 上一篇    下一篇

毫米波MIMO系统中稀疏度自适应的压缩感知信道估计

汪凤玲1,吴贇1,支佳2   

  1. 1. 东华大学 信息科技与技术学院,上海 201620
    2. 上海航天技术研究院,上海 201109
  • 收稿日期:2018-10-11 出版日期:2019-10-15 发布日期:2019-10-29
  • 作者简介:汪凤玲(1993-),女, 硕士研究生。研究方向:MIMO,无线通信。|吴贇(1976-),女,副教授。研究方向:信道估计和同步,认知无线电技术,压缩感知。
  • 基金资助:
    国家自然科学基金(61671143)

Sparse Adaptive Compressed Sensing Channel Estimation in Millimeter Wave MIMO Systems

WANG Fengling1,WU Yun1,ZHI Jia2   

  1. 1. College of Information Science and Technology,DonghuaUniversity,Shanghai 201620,China
    2. Shanghai Academy of Spaceflight Technology,Shanghai 201109,China
  • Received:2018-10-11 Online:2019-10-15 Published:2019-10-29
  • Supported by:
    National Natural Science Foundation of China(61671143)

摘要:

利用毫米波MIMO系统的稀疏特性,信道估计可以转化为稀疏信号重构的问题。解决毫米波MIMO稀疏信道估计问题时,传统的OMP方法需要信号的稀疏度作为先验信息,实际系统难以满足此需要。文中引入StOMP算法,根据信号已知的稀疏先验信息确定阈值,并结合动态的阈值调整,提出一种新的StOMP-D算法,实现了稀疏度自适应的毫米波MIMO信道估计。仿真结果表明,所提的方法与传统的LS方法比较,信道估计性能显著提高,并且与稀疏度已知的OMP方法性能十分接近,在稀疏度未知时有明显的优势。

关键词: 毫米波, MIMO, 压缩感知, 稀疏度自适应, 角度域, 贪婪算法

Abstract:

With the sparse characteristics of millimeter-wave MIMO systems, channel estimation can be transformed to the problem of sparse signal reconstruction. When solving the problem of millimeter-wave MIMO sparse channel estimation, the traditional OMP method requires the signal sparsity as a priori information, which is difficult to meet in practical systems. The StOMP algorithm was introduced in this paper. The threshold was determined according to the sparse prior information known by the signal. Combined with the dynamic threshold adjustment, a new StOMP-D algorithm was proposed to realize the sparse adaptive millimeter-wave MIMO channel estimation. The simulation results showed that compared with the traditional LS method, the performance of the proposed algorithm was significantly improved, and the performance of the OMP method with known sparsity was very close. It had obvious advantages when the sparsity was unknown.

Key words: millimeter-wave, MIMO, compressedcensing, sparseadaptive, angledomain, greedy algorithm

中图分类号: 

  • TN928