[1] |
张良培 . 高光谱遥感[M]. 武汉: 武汉大学出版社, 2005.
|
|
Zhang Liangpei. Hyperspectral remote sensing[M]. Wuhan: Wuhan University Press, 2005.
|
[2] |
童庆禧, 张兵, 张立福 . 中国高光谱遥感的前沿进展[J]. 遥感学报, 2016,20(5):689-707.
|
|
Tong Qingxi, Zhang Bing, Zhang Lifu . Current progress of hyperspectral remote sensing in China[J]. Journal of Remote Sensing, 2016,20(5):689-707.
|
[3] |
Bioucas-Dias J M, Plaza A, Camps-Valls G , et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2013,1(2):6-36.
|
[4] |
Chen G, Qian S E . Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(3):973-980.
|
[5] |
Zhao Y Q, Yang J . Hyperspectral image denoising via sparse representation and low-rank constraint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(1):296-308.
|
[6] |
Liu X, Bourennane S, Fossati C . Denoising of hyperspectral images using the PARAFAC model and statistical performance analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012,50(10):3717-3724.
|
[7] |
Zhang H, He W, Zhang L , et al. Hyperspectral image restoration using low-rank matrix recovery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(8):4729-4743.
|
[8] |
He W, Zhang H, Zhang L , et al. Hyperspectral image denoising via noise-adjusted iterative low-rank matrix approximation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015,8(6):3050-3061.
|
[9] |
Xie Y, Gu S, Liu Y , et al. Weighted Schatten p-norm minimization for image denoising and background subtraction[J]. IEEE Transactions on Image Processing, 2016,25(10):4842-4857.
|
[10] |
Chen Y, Guo Y, Wang Y , et al. Denoising of hyperspectral images using nonconvex low rank matrix approximation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(9):5366-5380.
|
[11] |
Bioucas-Dias J M, Plaza A, Dobigeon N , et al. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012,5(2):354-379.
|
[12] |
Wright J, Ganesh A, Rao S, et al. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization [C]. Vancouver: Advances in Neural Information Processing Systems, 2009.
|
[13] |
Liu G, Lin Z, Yan S , et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(1):171-184.
|
[14] |
Cai J F, Candès E J, Shen Z . A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010,20(4):1956-1982.
|
[15] |
Gu S, Zhang L, Zuo W, et al. Weighted nuclear norm minimization with application to image denoising [C]. Columbus:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014.
|
[16] |
Bioucas-Dias J M, Nascimento J M P . Hyperspectral subspace identification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008,46(8):2435-2445.
doi: 10.1109/TGRS.2008.918089
|
[17] |
Wang Z, Bovik A C, Sheikh H R , et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004,13(4):600-612.
doi: 10.1109/TIP.2003.819861
|
[18] |
Boyd S, Parikh N, Chu E , et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2011,3(1):1-122.
doi: 10.1561/2200000016
|
[19] |
Simoncini V . Computational methods for linear matrix equations[J]. SIAM Review, 2016,58(3):377-441.
doi: 10.1137/130912839
|
[20] |
Maggioni M, Katkovnik V, Egiazarian K , et al. Nonlocal transform-domain filter for volumetric data denoising and reconstruction[J]. IEEE Transactions on Image Processing, 2013,22(1):119-133.
doi: 10.1109/TIP.2012.2210725
|