电子科技 ›› 2020, Vol. 33 ›› Issue (12): 75-78.doi: 10.16180/j.cnki.issn1007-7820.2020.12.014

• • 上一篇    

基于变分模型的英汉翻译系统设计

郑萌   

  1. 大连东软信息学院,辽宁 大连 116023
  • 收稿日期:2019-10-21 出版日期:2020-12-15 发布日期:2020-12-22
  • 作者简介:郑萌(1988-),男,讲师。研究方向:英语翻译、计算机辅助翻译。
  • 基金资助:
    辽宁省高等教育学会“十二五”高校外语教学改革专项(WYYB150185)

Design of English-Chinese Translation System Based on Variational Model

ZHENG Meng   

  1. Dalian Neusoft University of Information,Dalian 116023,China
  • Received:2019-10-21 Online:2020-12-15 Published:2020-12-22
  • Supported by:
    Liaoning Provincial Higher Education Association "Twelfth Five-Year" College Foreign Language Teaching Reform Special Project(WYYB150185)

摘要:

对抗神经机器翻译方法是目前机器翻译算法的研究热点。传统对抗神经网络模型的翻译精度依赖大量语料数据集,模型训练需要耗费大量时间,在语料匮乏的情况下模型翻译质量较差。文中针对传统对抗神经网络机器翻译算法的不足,将变分算法和对抗神经网络相结合,并对语料数据进行训练。实验结果表明,文中建立的变分对抗神经网络翻译BLEU值相较于传统翻译算法有较为明显的提升;在训练语料数量匮乏时,模型BLEU值相较其他算法也有显著提升。说明文中提出的算法模型可以有效缩短数据的训练时间,提升数据的训练精度,改善句子的翻译质量。

关键词: 机器翻译, 对抗神经网络, 变分贝叶斯, 神经网络算法, 英汉翻译, 对抗学习, BLEU, 自然语言处理

Abstract:

Anti-neural machine translation method is a hot machine translation algorithm at present, but the translation accuracy of traditional anti-neural network model depends on a large number of corpus data sets, and the model training takes a lot of time. When the corpus is scarce, the model translation quality is poor. Aiming at the shortcomings of traditional anti-neural network machine translation algorithm, this paper combines variational algorithm with anti-neural network to train corpus data. Experimental results show that the BLEU value of the variational anti-neural network translation is obviously improved compared with the traditional translation algorithm.When the number of training corpus is scarce, the BLEU value of the model is greatly improved compared with other algorithms, which shows that the proposed algorithm model can effectively shorten the training time of data, elevate the training accuracy of data and improve the translation quality of sentences.

Key words: machine translation, fight against neural networks, variational Bayesian, neural network algorithm, English-Chinese translation, confrontational learning, BLEU, natural language processing

中图分类号: 

  • TP391