[1] |
Arikan E. Channel polarization:A method for constructing capacity-achieving codes[C]. Toronto:Proceedings of IEEE International Symposium on Information Theory, 2008.
|
[2] |
Arikan E. Channel polarization:A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7):3051-3073.
doi: 10.1109/TIT.2009.2021379
|
[3] |
妙琳, 彭亚雄, 陆安江. RA码与网络编码的联合设计[J]. 电子科技, 2020, 33(10):40-44.
|
|
Miao Lin, Peng Yaxiong, Lu Anjiang. Joint design scheme of RA code and network coding[J]. Electronic Science and Technology, 2020, 33(10):40-44.
|
[4] |
Gao J, Liu R. Neural network aided SC decoder for polar codes[C]. Chengdu:Proceedings of IEEE the Fourth International Conference on Computer and Communications, 2018.
|
[5] |
Zhang R, Liu F, Zeng Z, et al. Neural network based successive cancellation decoding algorithm for polar codes in URLLC[C]. Oulu:Proceedings of the Sixteenth International Symposium on Wireless Communication Systems, 2019.
|
[6] |
窦征立, 王亚刚. 基于Elman神经网络的联合循环机组燃烧室温度模型建模[J]. 电子科技, 2021, 34(3):60-64.
|
|
Dou Zhengli, Wang Yagang. Modeling of combustion chamber temperature model of combined cycle unit based on Elman neural network[J]. Electronic Science and Technology, 2021, 34(3):60-64.
|
[7] |
Feng B, Liu R. Efficient-memory and low-latency BP decoding algorithm for polar codes[J]. IEEE Communications Letters, 2020, 24(6):1236-1239.
doi: 10.1109/LCOMM.2020.2982643
|
[8] |
Khoshnevis H, Marsland I, Yanikomeroglu H. Throughput-based design for polar-coded modulation[J]. IEEE Transactions on Communications, 2019, 67(3):1770-1782.
doi: 10.1109/TCOMM.2018.2880204
|
[9] |
Shih X Y, Huang P C, Chen Y C. High-speed low-area-cost VLSI design of polar codes encoder architecture using radix-k processing engines[C]. Kyoto:IEEE the Fifth Global Conference on Consumer Electronics, 2016.
|
[10] |
林青. 极化码编译码算法研究及VLSI设计[D]. 合肥: 合肥工业大学, 2020.
|
|
Lin Qing. Research on encoding and decoding algorithm of polar codes and VLSI design[D]. Hefei: Hefei University of Technology, 2020.
|
[11] |
刘建航, 何怡静, 李世宝, 等. 基于预译码的极化码最大似然简化连续消除译码算法[J]. 电子与信息学报, 2019, 41(4):959-966.
|
|
Liu Jianhang, He Yijing, Li Shibao, el al. Pre-decoding based maximum-likelihood simplified successive-cancellation decoding of polar codes[J]. Journal of Electronics & Information Technology, 2019, 41(4):959-966.
|
[12] |
Shrestha R, Bansal P, Srinivasan S. High-throughput andhigh-speed polar-decoder VLSI-architecture for 5Gnew radio[C]. Delhi:The Thirty-second International Conference on VLSI Design and the Eighteenth International Conference on Embedded Systems, 2019.
|
[13] |
Li Q, Niu K, Dong C. A high throughput pipeline HARQ scheme of polar codes[C]. Shenzhen:Proceedings of the Nineteenth International Symposium on Wireless Personal Multimedia Communications, 2016.
|
[14] |
Tan W, Wang A, Xu Y, et al. Area-efficient pipelined VLSI architecture for polar decoder[C]. Limassol:Proceedings of IEEE Computer Society Annual Symposium on VLSI, 2020.
|
[15] |
Mishra A, Raymond A J, Amaru L G, et al. A successive cancellation decoder ASIC for a 1 024 bit polar code in 180 nm CMOS[C]. Kobe:Proceedings of IEEE Asian Solid State Circuits Conference, 2012.
|
[16] |
Shrestha R, Sahoo A. High-speed and hardware-efficient successive cancellation polar-decoder[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66(7):1144-1148.
doi: 10.1109/TCSII.2018.2877140
|
[17] |
Yoon H Y, Kim T H. Efficient successive-cancellation polar decoder based on redundant LLR representation[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(12):1944-1948.
doi: 10.1109/TCSII.2018.2811378
|
[18] |
Kalluru H S, Abbas Z. Optimal power-area polar decoder design based on iterative decomposition technique[C]. Rajkot:Proceedings of IEEE the Sixteenth India Council International Conference, 2019.
|
[19] |
李山山, 乔树山, 李智. 一种读写分离结构的SRAM译码器设计[J]. 电子设计工程, 2019, 27(14):6-9.
|
|
Li Shanshan, Qiao Shushan, Li Zhi. A read-write separated decoder design for SRAM[J]. Electronic Design Engineering, 2019, 27(14):6-9.
|