[1] |
Shen B, Zhang W Y, Qi D P, et al. Wireless multimedia sensor network based subway tunnel crack detection method[J]. International Journal of Distributed Sensor Networks, 2015, 11(6):184639-184649.
doi: 10.1155/2015/184639
|
[2] |
王耀东, 朱力强, 史红梅, 等. 基于局部图像纹理计算的隧道裂缝视觉检测技术[J]. 铁道学报, 2018, 40(2):82-90.
|
|
Wang Yaodong, Zhu Liqiang, Shi Hongmei, et al. Vision detection of tunnel cracks based on local image texture calculation[J]. Journal of the China Railway Society, 2018, 40(2):82-90.
|
[3] |
Ren Y, Huang J, Hong Z, et al. Image-based concrete crack detection in tunnels using deep fully convolutional networks[J]. Construction and Building Materials, 2020, 234(1):117367-117379.
doi: 10.1016/j.conbuildmat.2019.117367
|
[4] |
Medina R, Liamas J, Gómez-García-Bermejo J, et al. Crack detection in concrete tunnels using a Gabor filter invariant to rotation[J]. Sensors, 2017, 17(7):1670-1686.
doi: 10.3390/s17071670
|
[5] |
朱苏雅, 杜建超, 李云松, 等. 采用U-Net卷积网络的桥梁裂缝检测方法[J]. 西安电子科技大学学报, 2019, 46(4):35-42.
|
|
Zhu Suya, Du Jianchao, Li Yunsong, et al. Method for bridge crack detection based on the U-Net convolutional networks[J]. Journal of Xidian University, 2019, 46(4):35-42.
|
[6] |
Guan H, Li J, Yu Y, et al. Iterative tensor voting for pavement crack extraction using mobile laser scanning data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(3):1527-1537.
doi: 10.1109/TGRS.2014.2344714
|
[7] |
Ai D, Jiang G, Kei L S, et al. Automatic pixel-level pavement crack detection using information of multi-scale neighborhoods[J]. IEEE Access, 2018, 6(1):24452-24463.
doi: 10.1109/ACCESS.2018.2829347
|
[8] |
Zhang L, Zhou G, Han Y, et al. Application of internet of things technology and convolutional neural network model in bridge crack detection[J]. IEEE Access, 2018, 6(1):39442-39451.
doi: 10.1109/ACCESS.2018.2855144
|
[9] |
罗佳, 刘大刚. 基于自适应阈值和连通域的隧道裂缝提取[J]. 西南交通大学学报, 2018, 53(6):1137-1141.
|
|
Luo Jia, Liu Dagang. Tunnel crack extraction based on adaptive threshold and connected domain[J]. Journal of Southwest Jiaotong University, 2018, 53(6):1137-1141.
|
[10] |
Azeroual A, Afdel K. Fast image edge detection based on faber schauder wavelet and otsu threshold[J]. Heliyon, 2017, 3(12):1-19.
|
[11] |
胡晨, 胡德敏, 胡钰媛, 等. 一种改进的图像阴影去除方法[J]. 电子科技, 2021, 34(4):41-46.
|
|
Hu Chen, Hu Demin, Hu Yuyuan, et al. An improved image shadow removal method[J]. Electronic Science and Technology, 2021, 34(4):41-46.
|
[12] |
柏丽银, 彭亚雄, 陆安江. 基于改进Canny算子的手势图像边缘检测[J]. 电子科技, 2020, 33(7):46-50.
|
|
Bai Liyin, Peng Yaxiong, Lu Anjiang. Gestureimage edge detection based on improved canny operator[J]. Electronic Science and Technology, 2020, 33(7):46-50.
|
[13] |
王华夏. 高速铁路隧道衬砌裂缝图像快速采集系统研究[D]. 成都: 西南交通大学, 2013.
|
|
Wang Huaxia. Research on rapid acquisition image system for the cracks of high-speed railway tunnel lining[D]. Chengdu: Southwest Jiaotong University, 2013.
|
[14] |
王睿, 漆泰岳. 基于机器视觉检测的裂缝特征研究[J]. 土木工程学报, 2016, 49(7):123-128.
|
|
Wang Rui, Qi Taiyue. Study on crack characteristics based on machine vision detection[J]. China Civil Engineering Journal, 2016, 49(7):123-128.
|
[15] |
韩锟, 韩洪飞. 基于区域级和像素级特征的路面裂缝检测方法[J]. 铁道科学与工程学报, 2018, 15(5):1178-1186.
|
|
Han Kun, Han Hongfei. Pavement crack detection method based on region-level and pixel-level features[J]. Journal of Railway Science and Engineering, 2018, 15(5): 1178-1186.
|
[16] |
常庆贺, 吴敏华, 骆力明. 基于改进ZS细化算法的手写体汉字骨架提取[J]. 计算机应用与软件, 2020, 37(7):107-113.
|
|
Chang Qinghe, Wu Minhua, Luo Liming. Handwritten Chinese character skeleton extraction based on improved ZS thinning algorithm[J]. Computer Applications and Software, 2020, 37(7):107-113.
|
[17] |
Azmi A N, Nasien D, Omar F S. Biometric signature verification system based on freeman chain code and k-nearest neighbor[J]. Multimedia Tools and Applications, 2017, 76(14):15341-15355.
doi: 10.1007/s11042-016-3831-2
|