[1] |
Jo S H, Chang T, Ebong I, et al. Nanoscale memristor device as synapse in neuromorphic systems[J]. Nano Letters, 2010, 10(4):1297-1301.
doi: 10.1021/nl904092h
pmid: 20192230
|
[2] |
Wu A L, Zeng Z G. Exponential stabilization of memristive neural networks with time delays[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(12):1919-1929.
doi: 10.1109/TNNLS.2012.2219554
pmid: 24808147
|
[3] |
Wu A L, Zeng Z G. Lagrange stability of memristive neural networks with discrete and distributed delays[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 25(4):690-703.
doi: 10.1109/TNNLS.5962385
|
[4] |
Peng X, Wu H Q, Cao J D. Global nonfragile synchronization in finite time for fractional-order discontinuous neural networks withnonlinear growth activations[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 30(7):2123-2137.
doi: 10.1109/TNNLS.5962385
|
[5] |
王利敏, 宋乾坤, 赵振江. 基于忆阻的分数阶时滞复值神经网络的全局渐近稳定性[J]. 应用数学和力学, 2017, 38(3):333-346.
doi: 10.1007/s10483-017-2178-8
|
|
Wang Limin, Song Qiankun, Zhao Zhenjiang. Global asymptotic stability of memristor-based fractional-order complex-valued neural networks with time delays[J]. Applied Mathematics and Mechanics, 2017, 38(3):333-346.
doi: 10.1007/s10483-017-2178-8
|
[6] |
Chen J J, Chen B S, Zeng Z G. Global asymptotic stability and adaptive ultimate Mittag-Leffler synchronization for a fractional-order complex-valued memristive neural networks with delays[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 49(12):2519-2535.
doi: 10.1109/TSMC.6221021
|
[7] |
Liu P, Zeng Z G, Wang J. Asymptotic and finite-time cluster synchronization of coupled fractional-order neural networks with time delay[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11):4956-4967.
doi: 10.1109/TNNLS.5962385
|
[8] |
时慧, 童东兵. 基于自适应牵制控制的中立型复杂网络渐近同步[J]. 电子科技, 2021, 34(9):12-16.
|
|
Shi Hui, Tong Dongbing. The asymptotic synchronization of neutral complex networks with adaptive pinning control[J]. Electronic Science and Technology, 2021, 34(9): 12-16.
|
[9] |
张丹. 离散复杂动态网络的一种非脆弱同步算法[J]. 电子科技, 2014, 27(3):22-24.
|
|
Zhang Dan. Non-fragile synchronization algorithm for discrete-time complex dynamical networks[J]. Electronic Science and Technology, 2014, 27(3):22-24.
|
[10] |
Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Transactions on Automatic Control, 2011, 57(8):2106-2110.
doi: 10.1109/TAC.2011.2179869
|
[11] |
Xiao J Y, Cheng J, Shi K B, et al. A general approach to fixed-time synchronization problem for fractional-order multi-dimension-valued fuzzy neural networks based on memristor[J]. IEEE Transactions on Fuzzy Systems, 2021, 30(4):968-977.
doi: 10.1109/TFUZZ.2021.3051308
|
[12] |
Yang S, Yu J, Hu C, et al. Finite-time synchronization of memristive neural networks with fractional-order[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 51(6):3739-3750.
doi: 10.1109/TSMC.2019.2931046
|
[13] |
Fan Y J, Huang X, Li Y X, et al. Aperiodically intermittent control for quasi-synchronization of delayed memristive neural networks: An interval matrix and matrix measure combinedmethod[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 49(11):2254-2265.
doi: 10.1109/TSMC.6221021
|
[14] |
王梦梦, 周小涛, 李露露. 时滞忆阻神经网络在反馈控制下的指数同步[J]. 合肥工业大学学报(自然科学版), 2022, 45(1):141-144.
|
|
Wang Mengmeng, Zhou Xiaotao, Li Lulu. Exponential synchronization of delayed memristor neural networks under feedback control[J]. Journal of Hefei University of Technology(Natural Science), 2022, 45(1):141-144.
|
[15] |
Li C P, Deng W H. Remarks on fractional derivatives[J]. Applied Mathematics and Computation, 2007, 187(2):777-784.
doi: 10.1016/j.amc.2006.08.163
|
[16] |
Yang S, Hu C, Yu J, et al. Exponential stability of fractional-order impulsive control systems with applications in synchronization[J]. IEEE Transactions on Cybernetics, 2019, 50(7):3157-3168.
doi: 10.1109/TCYB.6221036
|
[17] |
Ren H W, Shi P, Deng F Q, et al. Fixed-time synchronizationof delayed complex dynamical systems with stochastic perturbation via impulsive pinning control[J]. Journal of the Franklin Institute, 2020, 357(17):12308-12325.
doi: 10.1016/j.jfranklin.2020.09.016
|
[18] |
Hu C, He H B, Jiang H J. Fixed/preassigned-time synchronization of complex networks via improving fixed-time stability[J]. IEEE Transactions on Cybernetics, 2020, 51(6):2882-2892.
doi: 10.1109/TCYB.2020.2977934
|
[19] |
Xiao J, Zeng Z G, Wen S P, et al. Finite-/fixed-time synchronization of delayed coupled discontinuous neural networks with unified control schemes[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(6):2535-2546.
doi: 10.1109/TNNLS.2020.3006516
|