[1] |
国家能源局. 我国光伏发电并网装机容量突破3亿千瓦分布式发展成为新亮点[EB/OL].(2022-01-20) [2022-10-05] http://www.nea.gov.cn/2022-01/20/c_1310432517.htm
|
|
National Energy Administration. The grid connected installed capacity of photovoltaic power generation in China has exceeded 300 million kilowatts, and distributed development has become a new highlight[EB/OL].(2022-01-20) [2022-10-05] http://www.nea.gov.cn/2022-01/20/c_1310432517.htm.
|
[2] |
Eltawil M A, Zhao Z. Grid-connected photovoltaic power systems:Technical and potential problems-A review[J]. Renewable and Sustainable Energy Reviews, 2009, 14(1):112-129.
doi: 10.1016/j.rser.2009.07.015
|
[3] |
赖昌伟, 黎静华, 陈博, 等. 光伏发电出力预测技术研究综述[J]. 电工技术学报, 2019, 34(6):1201-1217.
|
|
Lai Changwei, Li Jinghua, Chen Bo, et al. Review of photovoltaic power output prediction technology[J]. Transactions of China Electrotechnical Society, 2019, 34(6):1201-1217.
|
[4] |
毛李帆, 姚建刚, 金永顺, 等. 中长期负荷预测的异常数据辨识与缺失数据处理[J]. 电网技术, 2010, 34(7):148-153.
|
|
Mao Lifan, Yao Jiangang, Jin Yongshun, et al. Abnormal data identification and missing data filling in medium and long-term load forecasting[J]. Power System Technology, 2010, 34(7):148-153.
|
[5] |
徐一伦, 张彬桥, 黄婧, 等. 考虑天气类型和相似日的IWPA-LSSVM光伏发电功率预测[J]. 中国电力, 2023, 56(2):143-149.
doi: 10.11930/j.issn.1004-9649.202108059
|
|
Xu Yilun, Zhang Binqiao, Huang Jing, et al. Forecast of photovoltaic power based on IWPA-LSSVM considering weather type and similar day[J]. Electric Power, 2023, 56(2):143-149.
doi: 10.11930/j.issn.1004-9649.202108059
|
[6] |
张雨金, 杨凌帆, 葛双冶, 等. 基于Kmeans-SVM的短期光伏发电功率预测[J]. 电力系统保护与控制, 2018, 46(21):118-124.
|
|
Zhang Yujin, Yang Lingfan, Ge Shuangye, et al. Short-term photovoltaic power forecasting based on Kmeans algorithm and support vector machine[J]. Power System Protection and Control, 2018, 46(21):118-124.
|
[7] |
祁鑫, 王福忠, 张丽, 等. 基于SVD-LSTM的高校学生宿舍空调负荷预测[J]. 电子科技, 2020, 33(11):59-66.
|
|
Qi Xin, Wang Fuzhong, Zhang Li, et al. Air conditioning load forecast of university student's dormitory based on SVD-LSTM[J]. Electronic Science and Technology, 2020, 33(11):59-66.
|
[8] |
Gao X Y, Wang Y, Gao Y, et al. Short-term load forecasting model of GRU network based on deep learning framework[C]. Beijing: The Second IEEE Conference on Energy Internet and Energy System Integration, 2018:801-809.
|
[9] |
黄圆, 魏云冰, 童东兵, 等. 基于VMD和改进TCN的短期光伏发电功率预测[J]. 电子科技, 2023, 36(3):42-49.
|
|
Huang Yuan, Wei Yunbing, Tong Dongbing, et al. Short-term photovoltaic power prediction based on VMD andimproved TCN[J]. Electronic Science and Technology, 2023, 36(3):42-49.
|
[10] |
邱明, 鲁冠军, 吴昊天, 等. 基于数据清洗与组合学习的光伏发电功率预测方法研究[J]. 可再生能源, 2020, 38(12):1583-1589.
|
|
Qiu Ming, Lu Guanjun, Wu Haotian, et al. Short-term photovoltaic forecasting based on data cleansing and model combination[J]. Renewable Energy Resources, 2020, 38(12):1583-1589.
|
[11] |
孟安波, 许炫淙, 陈嘉铭, 等. 基于强化学习和组合式深度学习模型的超短期光伏功率预测[J]. 电网技术, 2021, 45(12):4721-4728.
|
|
Meng Anbo, Xu Xuancong, Chen Jiaming, et al. Ultra short term photovoltaic power prediction based on reinforcement learning and combined deep learning model[J]. Power System Technology, 2021, 45(12):4721-4728.
|
[12] |
贾睿, 杨国华, 郑豪丰, 等. 基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J]. 中国电力, 2022, 55(5):47-56,110.
|
|
Jia Rui, Yang Guohua, Zheng Haofeng, et al. Combined wind power prediction method based on CNN-LSTM&GRU with adaptive weights[J]. Electric Power, 2022, 55(5):47-56,110.
|
[13] |
陈振宇, 刘金波, 李晨, 等. 基于LSTM与XGBoost组合模型的超短期电力负荷预测[J]. 电网技术, 2020, 44(2):614-620.
|
|
Chen Zhenyu, Liu Jinbo, Li Chen, et al. Ultra short-term power load forecasting based on combined LSTM-XG-Boost model[J]. Power System Technology, 2020, 44(2):614-620.
|
[14] |
Wan R Z, Mei S P, Wang J, et al. Multivariate temporal convolutional network:A deep neural networks approach form-ulti-variate time series forecasting[J]. Electronics, 2019, 8(8):876-879.
doi: 10.3390/electronics8080876
|
[15] |
He K M, Zhang X Y, Ren S Q, et al. Deep residual lear-ning for image recognition[C]Las Vegas: IEEE Conference on Computer Vision and Pattern Recognition, 2016:39-43.
|
[16] |
邓带雨, 李坚, 张真源, 等. 基于EEMD-GRU-MLR的短期电力负荷预测[J]. 电网技术, 2020, 44(2):593-602.
|
|
Deng Daiyu, Li Jian, Zhang Zhenyuan, et al. Short-term electric load forecasting based on EEMD-GRU-MLR[J]. Power System Technology, 2020, 44(2):593-602.
|
[17] |
周恒俊, 王璇, 王志远, 等. 基于MIPCA与GRU网络的光伏出力短期预测方法[J]. 电力系统及其自动化学报, 2020, 32(9):55-62.
|
|
Zhou Hengjun, Wang Xuan, Wang Zhiyuan, et al. Short-term photovoltaic output prediction method based on MIPCA and GRU network[J]. Proceedings of the CSU-EPSA, 2020, 32(9):55-62.
|
[18] |
冯先丁, 魏镜弢, 吴张永, 等. 基于PCA-PSO-SVM的球磨机负荷预测研究[J]. 电子科技, 2022, 35(1):29-34.
|
|
Feng Xianding, Wei Jingtao, Wu Zhangyong, et al. Research on load forecast of ball mill based on PCA-PSO- SVM[J]. Electronic Science and Technology, 2022, 35(1):29-34.
|
[19] |
文彦飞, 王万雄. 基于FA-SVR-LSTM组合模型的短期电力负荷预测[J]. 电子科技, 2023, 36(9):1-7.
|
|
Wen Yanfei, Wang Wanxiong. Short-term power load forecasting based on FA-SVR-LSTM combined model[J]. Electronic Science and Technology, 2023, 36(9):1-7.
|
[20] |
宓登凯, 王彤, 相禹维, 等. 基于Elastic Net的暂态稳定裕度在线评估[J]. 电网技术, 2020, 44(1):19-26.
|
|
Mi Dengkai, Wang Tong, Xiang Yuwei, et al. Elastic net based online assessment of power system transient stability margin[J]. Power System Technology, 2020, 44(1):19-26.
|