电子科技 ›› 2024, Vol. 37 ›› Issue (7): 60-65.doi: 10.16180/j.cnki.issn1007-7820.2024.07.008

• • 上一篇    下一篇

面向盾牌形貌重建的双层采样点云粗配准方法

万晟睿1, 周志峰1,2, 吴明晖1,2, 王立端3, 周围4   

  1. 1.上海工程技术大学 机械与汽车工程学院,上海 201620
    2.上海市大型构件智能制造机器人技术协同创新中心,上海 201620
    3.上海司南卫星导航技术股份有限公司,上海 201801
    4.陆军装备部驻湘潭地区军事代表室,湖南 湘潭 411100
  • 收稿日期:2023-02-05 出版日期:2024-07-15 发布日期:2024-07-17
  • 作者简介:万晟睿(1997-),男,硕士研究生。研究方向:单目结构光三维重建。
    周志峰(1976-),男,博士,副教授。研究方向:计算机测控、自动导航驾驶、机器视觉与运动控制、嵌入式与信号处理。
    吴明晖(1973-),男,博士,讲师。研究方向:机器人环境感知与控制、特种机器人机构创新。
  • 基金资助:
    上海市优秀学术/技术带头人计划(22XD1433500)

Coarse Registration Method of Double-Layer Sampling Point Cloud for Shield Topography Reconstruction

WAN Shengrui1, ZHOU Zhifeng1,2, WU Minghui1,2, WANG Liduan3, ZHOU Wei4   

  1. 1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
    2. Shanghai Collaborative Innovation Center of Intelligent Manufacturing Robot Technology for Large Components, Shanghai 201620, China
    3. ComNav Technology Co.,Ltd., Shanghai 201801, China
    4. Military Representative Office of the Army Equipment Department in Xiangtan District,Xiangtan 411100, China
  • Received:2023-02-05 Online:2024-07-15 Published:2024-07-17
  • Supported by:
    Shanghai Excellent Academic/Technical Leader Program(22XD1433500)

摘要:

针对盾牌表面形貌三维重建过程中点云粗配准精度低和耗时长的问题,文中基于传统RANSAC(Random Sample Consensus)点云粗配准算法框架提出了一种双层采样点云粗配准算法。在第1层每次迭代中,采用单点采样进行刚性约束来减小对应集的大小,将此对应集作为第2层的“内点候选集”。算法第2层执行两个点的连续随机采样以及计算各自的最小模型,通过迭代最大化一致性集合并利用最小二乘法求解出最佳刚体变换矩阵。在实验阶段,采用6组降采样程度不同的盾牌点云,使用RANSAC算法和本文算法进行点云粗配准对比实验。实验结果表明,所提算法在粗配准速度和粗配准精度两方面都优于RANSAC算法,配准速度约为RANSAC算法的两倍,均方根误差为10-3 mm,比RANSAC算法的精度提高近400倍。

关键词: 形貌重建, 粗配准, RANSAC, 双层采样, 单点采样, 刚性约束, 一致性集合, 盾牌

Abstract:

In view of the problems of low precision and time-consuming point cloud coarse registration in the process of 3D reconstruction of shield surface topography, this study proposes a double-layer sampling point cloud coarse registration algorithm based on the traditional RANSAC(Random Sample Consensus) point cloud coarse registration algorithm framework. In each iteration of the first layer of the proposed algorithm, the single-point sampling is used for rigid constraints to reduce the size of the corresponding set, which is regarded as the "interior point candidate set" of the second layer. The second layer of the algorithm performs continuous random sampling of two points and computes their respective minimum models. The optimal rigid body transformation matrix is obtained by iteratively maximizing the consistent set and using the least square method. In the experimental stage, 6 groups of shield point clouds with different degrees of down sampling are used, and the RANSAC algorithm and the proposed algorithm are used to conduct a point cloud coarse registration comparison experiment. Experimental results show that the proposed algorithm is superior to the RANSAC algorithm in both rough registration speed and rough registration accuracy. The registration speed is about twice that of the RANSAC algorithm, and the root-mean-square error of the proposed algorithm is 10-3 mm, which is nearly 400 times higher than the RANSAC algorithm.

Key words: topography reconstruction, rough registration, RANSAC, double-layer sampling, single point sampling, rigid constraint, consensus set, shield

中图分类号: 

  • TP391