[1]BELL A J,SEJNOWSKI T J.An information-maximization approach to blind separation and blind deconvolution[J].Neural Computing,1995(7):1129-1159.
[2]KARHUNEN J,JOUTSENSALO J.Representation and separation of signals using nonlinear PCA type learning[J].Neural Networks,1994(7):113-127.
[3]KARHUNEN J,PAJUNEN P,OJA E.The nonlinear PCA criterion in blind source separation:Relation with other approaches[J].Neural Computing,1998(22):5-20.
[4]COMON P.Independent computing analysis,a new concept[J].Single Processing,1994(36):287-314.
[5]CARDOSO J F,LAHELD B.Equivariant adaptive source separation[J].IEEE Trans Siganl Processing,1996,44(3):3017-3030.
[6]YANG H H,AMARI S.Adaptive on-line learning algorithms for blind separation—maximum entropy and minimum mutual information[J].Neural Computation,1997(9):1457-1482
[7]YANG H H.Serial updating rule for blind separation derived from the method of scoring[J].IEEE Trans Signal Processing,1999,47(5):2279-2285.
[8]CRUCES S,CICHOCKI A,YANG H H.A new learning algorithm for blind signal separation[M].MA:MIT Press,1996.
[9]AMARI S.Natural gradient works efficiently in learning[J].Neural Computations,1998(10):251-276.
[10]CRUCES S,CICHOCKI A,CASTEDO L.An iterative inversion approach to blind sources separation[J].IEEE Trans Neural Networks,2000(11):1423-1437.
[11]MATHEWS V J,XIE Z.A stochastic gradient adaptive filter with gradient adaptive step size[J].IEEE Trans Signal Processing,1993(41):2075-2087.
[12]ZHANG Xianda,ZHU Xiaolong,BAO Zheng.Grading learning for blind source separation[J].Science in China:Series F,2003,46(1):31-44. |