›› 2013, Vol. 26 ›› Issue (1): 138-.

• 论文 • 上一篇    下一篇

蚁群算法收敛性验证系统的研究与实现

郑恩兴,刘冉冉   

  1. (1.常州刘国钧高等职业技术学校 机电工程系,江苏 常州 213025;2.常州刘国钧高等职业技术学校 自动化工程系,江苏 常州 213025)
  • 出版日期:2013-01-15 发布日期:2013-03-08
  • 作者简介:郑恩兴(1981—),男,硕士研究生,讲师。研究方向:控制工程与控制理论。E-mail:zhengenxing@sohu.com

Research on and Implementation of Ant Colony Algorithm Convergence

ZHENG Enxing,LIU Ranran   

  1. (1.Department of Mechanical and Electrical Engineering,Changzhou Liuguojun Higher Vocational and Technical School,Changzhou 213025,China;2.Department of Automation Engineering,Changzhou Liuguojun Higher Vocational Technical School,Changzhou 213025,China)
  • Online:2013-01-15 Published:2013-03-08

摘要:

蚁群算法是一种新型的仿生优化算法,具有较强的鲁棒性、优良的分布式机制、并行性以及正反馈等特点。目前蚁群算法已涉及众多应用领域,在解决复杂优化问题上具有较多优越性。文中深入研究了蚁群算法的性能及机制,分析了参数对算法性能的影响。在理论研究的基础上,实现了蚁群算法的仿真实验;通过Java绘图界面形象完整地展现出整个收敛的过程,验证了蚁群算法的收敛性;通过对参数的调试、组合,得到了最佳的收敛效果。该系统的实现对今后收敛性的研究打下了基础。

关键词: 蚁群算法, 收敛性, 优化算法

Abstract:

The ant colony algorithm is a new bionic optimization algorithm,and has strong robustness,excellent distributed mechanism,parallel and positive feedback,and etc.At present the ant colony algorithm have been involved in many fields of application,especially in solving complex optimization issue.This paper studies the performance and mechanism of ant colony algorithm for with a detailed analysis of the influence of the parameters on the performance of the algorithm.On the basis of theoretical analysis,the ant colony algorithm is simulated,and the whole process of convergence is demonstrated on Java graphics interface,which proves the convergence of ant colony algorithm.By the adjustment and combination of the parameters,the best effect of convergence is obtained.This system builds the foundation for further research on convergence.

Key words: ant colony algorithm;convergence;optimization algorithm

中图分类号: 

  • TP301.6