›› 2013, Vol. 26 ›› Issue (5): 106-.

• 论文 • 上一篇    下一篇

稀疏重构算法

王汗三,陈杰   

  1. (西安电子科技大学 理学院,陕西 西安 710071)
  • 出版日期:2013-05-15 发布日期:2013-06-20
  • 作者简介:王汗三(1989—),男,硕士研究生。研究方向:图像处理的数学方法。E-mail:wanghansan@sina.com

Sparse Reconstruction Algorithm

WANG Hansan,CHEN Jie   

  1. (School of Science,Xidian University,Xi'an 710071,China)
  • Online:2013-05-15 Published:2013-06-20

摘要:

在图像处理和统计中,对于一个大的欠定线性方程,找到一个稀疏的近似解,是一种常见问题。标准方法是对一个目标函数求极小值,其中目标函数由一个二次的误差项l2加一个正则项l1组成。针对一般性问题,目标函数有一个光滑的凸函数加上一个非光滑的正则项,提出了一种算法结构。该算法通过求解最优子问题,从而求出稀疏的近似解。仿真结果表明,该算法能够更快的求出近似解,在正则项是凸的情况下,可以证明目标函数的极小解是收敛的。

关键词: 稀疏逼近;压缩感知;最优化;重构

Abstract:

In image processing and statistics,to find a sparse approximate solution for a large underdetermined linear equation is a common problem.The standard method is to look for the minimum value of an objective function,which includes a quadratic l2 error term added to a regularizer l2.For the more general problem,we propose an algorithm,where the objective function is made up of a smooth convex function and a nonsmooth regularizer.The algorithm obtains the sparse approximate solution by solving the optimal sub-problems.The simulation result shows that the algorithm can find the approximate solution quickly and the minima solution of the function is convergent under the conditions namely convexity of the regularizer.

Key words: sparse approximation;compressed sensing;optimization;reconstruction

中图分类号: 

  • TP301.6