›› 2013, Vol. 26 ›› Issue (9): 4-.

• 论文 • 上一篇    下一篇

融合先验信息的脑功能图像分割

宋丹丹   

  1. (中国科学院自动化研究所 模式识别国家重点实验室,北京 100190)
  • 出版日期:2013-09-15 发布日期:2013-09-25
  • 作者简介:宋丹丹(1987—),女,硕士研究生。研究方向:医学图像处理。E-mail:dandan.song@ia.ac.cn

Robust Brain fMRI Image Parcellation with Prior Information

SONG Dandan   

  1. (Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China)
  • Online:2013-09-15 Published:2013-09-25

摘要:

基于静息态功能磁共振图像(fMRI)的脑功能区分割广泛采用K均值聚类和谱聚类等无监督聚类算法。但这些算法对图像噪声较为敏感,可能会产生不可靠的脑区分割结果。文中提出了一种融合先验信息的半监督聚类算法,可以可靠地确定各子区间的边界,从而得到稳定的分割结果。提出的方法对人类右侧大脑的Broca区(BA44/45区)进行分割验证,实验结果表明,文中的方法不仅得到了可靠的功能子区边界,而且获得了较高的个体间一致性。

关键词: 半监督聚类, 脑区分割, 功能磁共振图像, 功能连接

Abstract:

Resting state functional magnetic resonance imaging (fMRI) data have been increasingly used for identifying functional subunits of the human brain by clustering image voxels using algorithms such as k-means and spectral clustering.However,such unsupervised clustering methods are sensitive to imaging noise,thus generating unstable brain parcellation results.In this study,we present a prior information guided,semi-supervised clustering method to identify reliable boundaries between functional subunits for achieving robust brain parcellation.The proposed method has been validated for parcellation of Broca area (Brodmann areas 44 and 45) in the right hemisphere of the human brain based on resting state fMRI data.Experimental results demonstrate that our method not only identifies more reliable boundaries between functional subunits,but also achieves higher reproducibility across subjects.

Key words: semi-supervised clustering;brain parcellation;fMRI;functional connectivity

中图分类号: 

  • TP391.41