›› 2014, Vol. 27 ›› Issue (1): 34-.

• 论文 • 上一篇    下一篇

一种改进的机动目标跟踪算法

畅言,严超,罗利强,马可   

  1. (1.西安电子工程研究所 人力资源部,陕西 西安 710100;2.西安电子工程研究所 总体一部,陕西 西安 710100)
  • 出版日期:2014-01-15 发布日期:2014-01-12
  • 作者简介:畅言(1987—),男,硕士研究生。研究方向:数据处理,融合。E-mail:changyan9527@163.com

(1.Department of Human Resources,Xi'an Institute of Electronic Engineering,Xi'an 710100,China;
2.Overall Unit 1,Xi'an Institute of Electronics Engineering,Xi'an 710100,China)

 CHANG Yan, YAN Chao, LUO Li-Qiang, MA Ke   

  1. (1.Department of Human Resources,Xi'an Institute of Electronic Engineering,Xi'an 710100,China;
    2.Overall Unit 1,Xi'an Institute of Electronics Engineering,Xi'an 710100,China)
  • Online:2014-01-15 Published:2014-01-12

摘要:

针对传统Singer滤波算法,跟踪机动目标精度较低、收敛较慢的问题,提出了一种改进的Singer算法,该算法根据新息的衰减记忆平均值和加速度滤波值,实时调整过程噪声协方差矩阵,改变滤波增益,减小了位置的均方根误差,并提高了速度和加速度的滤波精度,通过Matlab仿真,证明了该算法的可行性。

关键词: Singer滤波算法, 机动检测, 过程噪声协方差, 新息衰减平均值

Abstract:

An improved algorithm is presented to deal with the low accuracy of maneuvering detection and slow convergence of traditional singer algorithm.The algorithm is based on the average of innovation memory while adjusting process noise covariance matrix,changing the filter gain and reducing the position RMSE,to increase the speed and acceleration accuracy of the filter.Matlab simulation proves the feasibility of the algorithm.

Key words: Singer filtering algorithm;maneuver detection;process noise covariance;innovation attenuation average

中图分类号: 

  • TN713