›› 2014, Vol. 27 ›› Issue (8): 6-.

• 论文 • 上一篇    下一篇

基于Kinect深度图像的指尖识别及手势判定

袁方剑,王毅轩,王毅刚,杨道谈   

  1. (1.杭州电子科技大学 计算机学院,浙江 杭州 310018;2.伊川县交通局,河南 伊川 471300)
  • 出版日期:2014-08-15 发布日期:2014-07-21
  • 作者简介:袁方剑(1989—),男,硕士研究生。研究方向:计算机图形学,虚拟现实。E-mail:space3344@126.com。王毅刚(1973—),男,博士后,博士生导师。研究方向:计算机图形学,虚拟现实。杨道谈(1989—),男,硕士研究生。研究方向:计算机图形学,虚拟现实。
  • 基金资助:

    国防基础科研重点基金资助项目

Fingertip Detection and Gesture Identification Based on Kinect Depth Image

YUAN Fangjian,WANG Yixuan,WANG Yigang,YANG Daotan   

  1. (1.College of Computer Science,Hanzhou Electronic Science and Technology University,Hangzhou 310018,China;
    2.Bureau of Communications of Yichuan County,Yichuan 471300,China)
  • Online:2014-08-15 Published:2014-07-21

摘要:

在基于微软Kinect体感设备开发的交互应用系统中,使用传统的鼠标、键盘等交互设备难以达到理想的效果。针对这种情况,提出一种基于指尖识别的手势判定方法。采用Kinect传感器获取图像的深度信息,通过OpenNI的内置模块获取手心的位置信息,使用最近邻法实现手部的分割并对手形进行提取;并采用射线求交法优化Graham Scan算法获取凸包点集合,利用轮廓分析法从凸包点中识别出指尖。在此基础上,结合指尖数目和面积比例实现对“抓取”手势的判定。实验结果表明,该方法能有效地识别抓取动作的手势,且具有良好的鲁棒性。

关键词: 指尖识别, Kinect, OpenNI, 手势识别, 人机交互

Abstract:

In the development of interactive application systems based on the Microsoft Kinect somatosensory equipment,it is difficult to achieve desired results using traditional human computer interaction devices like mouse and keyboard.A gesture identification method based on fingertip detection is presented to address this problem.The depth information of the image is obtained using the Kinect sensor,and the position information of the palm center using the built-in module of OpenNI SDK.Then the nearest neighbor method is used to achieve hand segmentation and extract the hand shape.After that,the convex hull is obtained using the Graham Scan algorithm optimized with a ray intersection method.Finally,the fingertips are detected using the profile analysis method from the convex hull.On this basis,the recognition of the "grab" gestures is realized using the number of fingertips and the area ratio.Experiments results show that this method can effectively identify the grasp gesture and has good robustness.

Key words: fingertip detection;Kinect;OpenNI;gesture identification;human-computer interaction

中图分类号: 

  • TP391.41