›› 2015, Vol. 28 ›› Issue (10): 1-.

• 论文 •    下一篇

基于自适应PCNN的紫外图像融合算法

马立新,周小波,单宇   

  1. (上海理工大学 光电信息与计算机工程学院,上海 200093)
  • 出版日期:2015-10-15 发布日期:2015-10-29
  • 作者简介:马立新(1960—),男,博士,教授。研究方向:电力系统稳定性与优化运行等。E-mail:malx_aii@sina.com。周小波(1991—),男,硕士研究生。研究方向:数字图像处理。
  • 基金资助:
    国家自然科学基金资助项目(61205076)

UV Image Fusion Based on Adaptive PCNN

MA Lixin,ZHOU Xiaobo,SHAN Yu   

  1. (School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
  • Online:2015-10-15 Published:2015-10-29

摘要: 电晕放电产生的紫外线波长为200~400 nm,为避开太阳光和日光灯的干扰,利用240~280 nm这一日盲波段获取紫外放电图。为能够确定电晕放电的位置,提出了一种适用于可见光图像和紫外图像融合的新算法。以图像空间频率和信息熵作为PCNN对应神经元的链接强度值,并与加权平均法、拉普拉斯金字塔变换方法和小波方法等融合算法相比较。实验结果表明,文中方法优于其它方法,融合效果良好。

关键词: 图像融合;空间频率;信息熵;PCNN;链接强度

Abstract: The ultraviolet wavelength that corona discharge emits is 200~400 nm.In order to avoid the interference of sunlight and fluorescent lamp,ultraviolet discharge images are acquired by using the sun-blind band from 240 to 280 nm.A visible and UV image fusion algorithm is presented for locating corona discharge.The proposed method uses spatial frequency and information entropy as PCNN linking strength values.Experimental results show that this algorithm offers better fusion results than the weighted average method,the Laplacian-based method and the wavelet-based method.

Key words: image fusion;spatial frequency;information entropy;PCNN;linking strength

中图分类号: 

  • TP391.41