›› 2016, Vol. 29 ›› Issue (2): 8-.

• 论文 • 上一篇    下一篇

一种结合模拟退火和贪心策略的社团识别算法

王丰雪,陈家琪   

  1. (上海理工大学 光电信息与计算机工程学院,上海 200093)
  • 出版日期:2016-02-15 发布日期:2016-02-25
  • 作者简介:王丰雪(1991—),女,硕士研究生。研究方向:复杂网络社团识别。陈家琪(1957—),男,教授。研究方向:计算机网络与信息安全等。
  • 基金资助:

    上海市教委科研创新基金资助项目(12zz146)

A Community Detection Combining Simulated Annealing and Greedy Method

WANG Fengxue,CHEN Jiaqi   

  1. (School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 20093,China)
  • Online:2016-02-15 Published:2016-02-25

摘要:

为了提高复杂网络社团识别的精度和速度,文中结合模拟退火和贪心策略识别社团结构的优势,提出一种新的社团识别算法。该算法利用贪心策略引导模拟退火搜索最优解过程中单个结点的无规则盲目移动,消除了大量无效移动,在搜索到全局最优解的情况下,将搜索时间大幅缩减。实验表明,SAGA具有强大的搜索能力和较快的模拟退火执行速度,可获得较高的模块度,达到较为准确的社团分割,且具有一定的应用价值。

关键词: 复杂网络, 社团识别, SAGA算法, 模拟退火, 贪心策略

Abstract:

To promote the accuracy and velocity of detection for the community structure in the network,this paper proposes the new community detection method of simulated annealing and greedy algorithm (SAGA),which combines the simulated annealing algorithm and greedy optimization.This algorithm uses greedy strategy to guide the irregular and blind movement of many single nodes in searching the optimal solution of the simulated annealing algorithm,thus removing many invalid movements and greatly reducing the search time to achieve the global optimal solution.The results show that SAGA has higher execution speed with better search ability to obtain higher modularity than the simulated annealing algorithm,and can be effectively used in certain applications.

Key words: complex network;community detection;modularity;simulated annealing;greedy optimization

中图分类号: 

  • TP393.02