›› 2016, Vol. 29 ›› Issue (6): 15-.

• 论文 • 上一篇    下一篇

基于粒子滤波的动态自回归预测模型方法

张海兵   

  1. (昆明船舶设备研究试验中心 第5室,云南 昆明 650051)
  • 出版日期:2016-06-15 发布日期:2016-06-22
  • 作者简介:张海兵(1989-),男,硕士,助理工程师。研究方向:动力装备状态监测与故障诊断。

Dynamic Autoregression Prediction Model Based on Particle Filter

ZHANG Haibing   

  1. (Fifth Room,Kunming Marine Equipment Test Research Center, Kunming 650051, China)
  • Online:2016-06-15 Published:2016-06-22

摘要:

针对自回归模型以固定历史观测序列建模,模型不能随时间序列新的观测值实时更新,导致预测中对序列趋势变化适应性差,预测精度低的问题,提出以粒子滤波动态优化调整自回归模型的方法,通过对模型参数蒙特卡洛采样得到粒子,以粒子描述模型状态变量的演变,采用递推贝叶斯方法估计粒子权重,由粒子及其权重近似模型参数的后验滤波值,从而随观测序列的动态获得不断更新模型参数,提高了模型预测结果的精确性,并能给出预测结果的置信区间。最后以NASA艾姆斯中心锂离子电池试验数据为例,验证了该方法的有效性。

关键词: 时间序列, 自回归模型, 粒子滤波, 动态更新

Abstract:

As to the problem of autoregressive model built on fixed time series and cannot update with the new value, which result in the poor trend adaptability and low prediction precision, a dynamic model parameter optimization method based on the particle filter is proposed. Firstly, particles are sampled from model parameters to describe the state variables. Further, the weights of particles are calculated using Recursive Bayes estimation method, therefore the posterior filtered estimations can be represented by particles and their weights, and then use them to update the AR model along with the new observe value achieve. The proposed method can improve the predict result accuracy of AR model and give the confidence interval of predict result as well. In the end of the article, effectiveness of the method is verified by lithiumion battery data tested in NASAs Ames Research Center.

Key words: time series, auto regression model, particle filter, dynamic update

中图分类号: 

  • TP301.6