摘要:
针对自回归模型以固定历史观测序列建模,模型不能随时间序列新的观测值实时更新,导致预测中对序列趋势变化适应性差,预测精度低的问题,提出以粒子滤波动态优化调整自回归模型的方法,通过对模型参数蒙特卡洛采样得到粒子,以粒子描述模型状态变量的演变,采用递推贝叶斯方法估计粒子权重,由粒子及其权重近似模型参数的后验滤波值,从而随观测序列的动态获得不断更新模型参数,提高了模型预测结果的精确性,并能给出预测结果的置信区间。最后以NASA艾姆斯中心锂离子电池试验数据为例,验证了该方法的有效性。
中图分类号: