›› 2016, Vol. 29 ›› Issue (7): 1-.

• 论文 •    下一篇

基于栅格模型机器人路径规划的量子蚁群算法

张晨,游晓明   

  1. (上海工程技术大学 电子电气工程学院,上海 201620)
  • 出版日期:2016-07-15 发布日期:2016-07-15
  • 作者简介:张晨(1990-),女,硕士研究生。研究方向:嵌入式系统与智能算法。游晓明(1963-),女,博士,教授。研究方向:智能信息处理理论及应用等。
  • 基金资助:

    国家自然科学基金资助项目(61075115);上海市教委科研创新重点基金资助项目(12ZZ185);上海市学科专业建设基金资助项目(XKCZ1212);创新课题资助项目(14KY0210)

Improved Quantum ant Colony Algorithm of Path Planning for Mobile Robot Based on Grid Model

ZHANG Chen, YOU Xiaoming   

  1. (College of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China)
  • Online:2016-07-15 Published:2016-07-15

摘要:

针对复杂环境中移动机器人路径规划问题,提出了一种基于量子-蚁群算法(QACA)融合的路径规划算法。该算法的核心是在蚁群系统(ACS)中引入量子算法中的量子态矢量和量子旋转门来分别表示和更新信息素,增加位置的多样性,加快算法的收敛速度。通过仿真实验表明,该算法可增加算法的随机性,较传统的蚁群算法具有更好的种群多样性,更快的收敛速度和全局寻优能力,即使在障碍物较复杂的环境下,也能迅速规划出一条最优路径。

关键词: 量子进化算法, 蚁群算法, 复杂环境, 栅格法, 路径规划

Abstract:

For mobile robot path planning in complex environments, an ant colony algorithm based on quantum (QACA) is proposed to plan the optimal collision-free path. The core of the algorithm is the introduction of the quantum state vector of quantum algorithm to respect the pheromone and quantum revolving gate to update the pheromone in ant colony system (ACS), in order to increase the diversity of position and to speed up the convergence speed of the algorithm. Simulation comparison shows that the algorithm can increase the randomness of the algorithm with better population diversity, higher convergence speed and better global optimization ability than the traditional ant colony algorithm, and can quickly find a optimal path planning even in the very complex environment.

Key words: quantum evolutionary algorithm, ant colony algorithm, complex environment, grids, path planning

中图分类号: 

  • TP301.6