›› 2016, Vol. 29 ›› Issue (9): 4-.

• 论文 • 上一篇    下一篇

融合改进蚁群和粒子群算法的路径搜索应用

杜 博,夏春蕾,戴曙光   

  1. (上海理工大学 光电信息与计算机工程学院,上海 200093)
  • 出版日期:2016-09-15 发布日期:2016-09-26
  • 作者简介:杜博(1990-),男,硕士研究生。研究方向:汽车电子。夏春蕾(1974-),女,讲师。研究方向:信号 与信息处理。戴曙光(1957-),男,教授。研究方向:信息处理,测试计量技术。
  • 基金资助:

    国家自然科学基金资助项目(61170277);上海市教委科研创新重点基金资助项目(12zz137);上海市一流学科建设基金资助项目(S1201YLXK)

Application of Improved Fused ACO and PSO Algorithms in Vehicle Routing Search

DU Bo, XIA Chunlei, DAI Shuguang   

  1. (School of Optical-electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)
  • Online:2016-09-15 Published:2016-09-26

摘要:

针对车辆路径搜索对其计算质量和效率要求较高问题,且原始蚁群算法和标准粒子群算法均存在局部优先解、停滞以及收敛速度较慢等缺陷,提出一种融合改进的蚁群和粒子群路径搜索算法。在融合算法前期提高粒子群算法收敛速度,利用其进行粗搜索,后期利用改进的蚁群算法进行细搜索。通过仿真分析表明,融合后的改进算法在路径规划和计算效率上均有较大提升。

关键词: 路阻模型, 融合算法, 路径搜索, 仿真分析

Abstract:

The ant colony and particle swarm optimization have the disadvantages of local preferred solution, stagnation and low convergence speed. A fusion of improved ant colony and particle swarm algorithm is proposed to meet the high quality and efficiency requirements of vehicle routing search., use the coarse search is used in the early stage, and the improved ant colony algorithm for the following fine search. Simulation shows that the improved algorithm significant improves the efficiency of path planning and calculation.

Key words: impedance model, fused algorithm, path search, simulated analysis

中图分类号: 

  • TP273