›› 2016, Vol. 29 ›› Issue (9): 52-.

• 论文 • 上一篇    下一篇

基于短时自相关及过零率的语音端点检测算法

纪振发,杨 晖, 李 然, 金银超   

  1. (上海理工大学 光电信息与计算机工程学院,上海 200093)
  • 出版日期:2016-09-15 发布日期:2016-09-26
  • 作者简介:纪振发(1990-),男,硕士研究生。研究方向:信号处理。杨晖(1981-),男,博士,副教授。研究方向:光学精密测量。

Speech Endpoint Detection Algorithm Based on Short Time Autocorrelation and Short-time Zero Crossing Rate

JI Zhenfa, YANG Hui, LI Ran, JIN Yinchao   

  1. (School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)
  • Online:2016-09-15 Published:2016-09-26

摘要:

传统的基于短时能量端点检测算法,在高信噪比环境下可以比较准确地检测出语音端点,但在低信噪比环境下检测效果不理想。文中提出了基于短时自相关最大值与短时过零率之积的改进算法。利用短时自相关最大值可以有效地区分出语音段和噪音段,利用短时过零率可有效地检测出清音信号,将两参数相结合可有效地检测出低信噪比语音信号的端点。实验证明,在低信噪比环境下该改进算法相比短时能量算法减小了检测误差,可以有效地检测出语音端点。

关键词: 端点检测, 短时能量, 短时自相关最大值, 短时过零率

Abstract:

The traditional endpoint detection algorithm based on short-time energy can detect speech endpoint accurately in high SNR environment, but the effect is not satisfactory in low SNR environment. For this purpose, an improved algorithm is proposed based on the maximum value of short-time auto correlation and the zero crossing rate. The short-time autocorrelation maximum is used for valid speech segments area and noise, while the short-time zero crossing rate for the effective detection of the unvoiced signal, thus effectively detecting the endpoint of the speech signal. Experiments show that the improved algorithm reduces the detection error compared to the short time energy algorithm in the low SNR environment, and it can effectively detect the speech endpoint.

Key words: endpoint detection, short-time energy, short time autocorrelation maximum, short-time zero crossing rate

中图分类号: 

  • TN912.34