›› 2017, Vol. 30 ›› Issue (9): 117-.

• 论文 • 上一篇    下一篇

基于当前模型自适应改进的航迹跟踪算法

崔龙飞,张 星,吴晓朝,张才坤   

  1. (洛阳电子装备试验中心 研究所,河南 洛阳471000)
  • 出版日期:2017-09-15 发布日期:2017-11-03
  • 作者简介:崔龙飞(1988-),男,博士研究生。研究方向:空情融合等。

An Adaptively Adjusting Improved Algorithm of Trajectory Tracking Based on Current Statistical Model

CUI Longfei,ZHANG Xing,WU Xiaochao,ZHANG Caikun   

  1. (Institute,Electronic Equipment Experimental Center of Luoyang, Luoyang 471000, China
  • Online:2017-09-15 Published:2017-11-03

摘要:

在航迹跟踪过程中,目标发生转弯、变加速等强机动行为,会导致传统"当前"统计模型的跟踪精度变差,通过提取残差新息序列和测量方差序列中的信息,分别在"当前"统计模型中添加机动频率、最大加速度自适应修正因子,以及在卡尔曼滤波框架中增加协方差自适应因子,改善了该算法对强机动目标跟踪的适应能力。通过改进,该算法即保持了对一般机动目标良好的跟踪特性,又提高了对强机动目标的跟踪性能。通过使用蒙特卡洛模拟仿真验证了改进算法的有效性。

关键词: 航迹融合, 当前 统计模型, 卡尔曼滤波, 新息差序列, 方差自适应

Abstract:

In the case of the strong maneuver such as turning and accelerating, the tracking fusion accuracy of the traditional current statistical model goes sharply declined. To solve this problem, we proposed an improved model by extracting the information of the residual error sequence and measuring the variance sequence. The new model we proposed can adaptive adjust to the maneuvering frequency and maximum acceleration by the detection of the maneuvering mode and the addition of the covariance adaptive factor in the kalman filtering framework. Through the improvement, the algorithm can not only keep the good performance of general maneuvering target tracking, but also improve the matching degree between current statistical model and the real motion pattern in the situation of target maneuvering state transition, which makes the fusion accuracy of the track fusion system greatly improved when the target maneuvering state is abrupt. Finally, Monte Carlo simulation is used to verify the proposed method.

Key words: track fusion;current statistical model;kalman filter;innovation sequence;variance adaptive

中图分类号: 

  • TN713