›› 2018, Vol. 31 ›› Issue (3): 5-.

• 论文 • 上一篇    下一篇

面向拆卸线平衡的维度学习多目标粒子群优化

 肖闪丽, 王宇嘉, 于慧   

  1. 上海工程技术大学  电子电气工程学院
  • 出版日期:2018-03-15 发布日期:2018-03-15
  • 作者简介:肖闪丽(1990-),女,硕士研究生。研究方向:粒子群优化算法等。 王宇嘉(1979-),女,博士,副教授。研究方向:智能控制方向等。 于慧(1994-),女,硕士研究生。研究方向:动态多目标粒子群优化等。

Multi-Objective Particle Swarm Optimization Based on Dimensional Learning for Solving the Disassembly Line Balancing Problem

XIAO Shanli,WANG Yujia,YU Hui   

  1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science
  • Online:2018-03-15 Published:2018-03-15
  • Supported by:

    国家自然科学基金(61403249);上海市自然科学基金(10ZR1314000);上海工程技术大学创新项目(E309031701225)

摘要:

针对拆卸线平衡问题的复杂度随着产品拆卸的零部件数量的增多而增加的问题,提出了一种基于维度学习的多目标粒子群优化算法。根据拆卸线平衡问题的特性,构建包含四个决策目标的拆卸线平衡问题的数学模型,并根据模型特点,建立粒子位置与拆卸序列之间的映射关系,利用粒子位置的更新来获得最优拆卸序列。通过对不同规模的拆卸线平衡问题的求解,验证了本文所提算法的有效性及可行性。

关键词: 拆卸线平衡;粒子群算法;多目标优化;拆卸序列

Abstract:

Focus on the complexity of disassembly line balancing problem (DLBP) increases with the number of parts of the product, a multi-objective particle swarm optimization based on dimensional learning (DL-MOPSO) is proposed. Firstly, the mathematical model of DLBP with four decision objectives is constructed based on the characteristics of DLBP. Then according to the mapping relation between particle position and disassembly sequence, the optimal disassembly sequence is obtained by updating the positions of the particles. Finally, the results from testing in using series of instances with different size verify the effect of proposed algorithm.

Key words: disassembly line balancing, particle swarm optimization (PSO), multi-objective optimization, the disassembly sequence

中图分类号: 

  • TP301