电子科技 ›› 2019, Vol. 32 ›› Issue (1): 47-51.doi: 10.16180/j.cnki.issn1007-7820.2019.01.0010

• • 上一篇    下一篇

基于模板匹配的快速少纹理目标识别算法

秦海报   

  1. 南京航空航天大学 电子信息工程学院,江苏 南京 210016
  • 收稿日期:2018-01-14 出版日期:2019-01-15 发布日期:2018-12-29
  • 作者简介:秦海报(1992- ),男,硕士研究生。研究方向:数字图像处理。
  • 基金资助:
    航空科学基金(20161852017)

Texture-less Object Detection Algorithm with Speed-up Based on Template Matching

QIN Haibao   

  1. School of Electronic Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
  • Received:2018-01-14 Online:2019-01-15 Published:2018-12-29
  • Supported by:
    Aviation Science Foundation(20161852017)

摘要:

针对传统的基于模板匹配算法通常考虑模板的整体性往往遇到计算性能复杂的问题。文中提出一种基于二进制方向压缩映射和局部特征加权的快速少纹理目标识别方法。根据目标边缘点的量化梯度方向,利用二进制方向压缩映射方法对目标模型进行特征描述,快速提取出目标候选位置及其对应的尺度、角度信息;在检测出目标候选位置后,再利用局部特征加权方法建立新的模板特征,对目标候选位置计算新的相似度从而确定目标最终姿态。实验结果表明,文中算法与其他具有代表性的算法相比具有更好的识别率,并且识别时间大幅降低。

关键词: 少纹理目标, 目标识别, 模板匹配, 目标候选位置, 二进制方向压缩映射, 局部特征加权

Abstract:

The traditional template-based matching algorithms generally consider the integrity of the template, which brings often the problem of computational complexity. This paper proposed a fast approach to texture-less object detection based on the binarized orientation compressed map and local feature weighting. According to the quantized gradient orientation of the edge points, the proposed method described the representation of the template features by using the orientation compressed map, which could estimate object candidate locations and corresponding scale and rotation information with fast-speed. After the detection of the object candidate locations, a new template feature was built based on the local feature weighting, and the novel similarity of the object candidate locations was calculated to determine the final pose of the object. Experiments showed that the proposed method had better recognition rate than other representative algorithms, and the recognition speed was greatly improved.

Key words: texture-less object, object detection, template matching, object candidate locations, the binarized orientation compressed map, the local feature weighting

中图分类号: 

  • TP391