电子科技 ›› 2019, Vol. 32 ›› Issue (10): 60-64.doi: 10.16180/j.cnki.issn1007-7820.2019.10.012

• • 上一篇    下一篇

求解改进布谷鸟算法的置换流水车间调度问题

邴孝锋,陶翼飞,董圆圆,孙思汉   

  1. 昆明理工大学 机电工程学院,云南 昆明 650000
  • 收稿日期:2018-10-24 出版日期:2019-10-15 发布日期:2019-10-29
  • 作者简介:邴孝锋(1992-),男,硕士研究生。研究方向:并行机调度、流水车间调度。|陶翼飞(1983-),男,博士,讲师。研究方向:复杂生产及物流系统建模、调度算法。|董圆圆(1993-),女,硕士研究生。研究方向:物流分拣。|孙思汉(1993-),男,硕士研究生。研究方向:混合流水车间调度。
  • 基金资助:
    国家自然科学基金地区基金(51566006)

Solving the Problem of Replacement Flow Shop Scheduling Based on Improved Cuckoo Algorithm

BING Xiaofeng,TAO Yifei,DONG Yuanyuan,SUN Sihan   

  1. Faculty of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming 650000,China
  • Received:2018-10-24 Online:2019-10-15 Published:2019-10-29
  • Supported by:
    National Natural Science Foundation Regional Fund of China(51566006)

摘要:

针对实际工况下置换流水车间调度问题,文中以最小化完工时间为目标对标准布谷鸟算法进行了改进。为提高优化解的稳定性和算法的计算精度,该算法将淘汰概率引入动态自适应机制,将局部搜索引入差分进化机制,并在初始种群的生成中引入NEH算法。文中将改进的布谷鸟算法运用于解决实际工况下的置换流水车间调度问题,通过与标准布谷鸟算法仿真优化结果进行对比,证明了改进布谷鸟算法具有更好的解的稳定性和更高的寻优精度。

关键词: 关置换流水车间调度, 布谷鸟搜索算法, 淘汰概率, 局部搜索, 差分进化机制, 最小化完工时间

Abstract:

Aiming at the problem of displacement flow shop scheduling under actual working conditions, the standard cuckoo algorithm was improved with the goal of minimizing the completion time. In order to improve the stability of the optimized solution and the computational accuracy of the algorithm, the proposed algorithm introduced the elimination probability into the dynamic adaptive mechanism. Besides, the proposed algorithm also introduced the local search into the differential evolution mechanism, and applied the NEH algorithm in the initial population generation. The improved cuckoo search was applied to solve the permutation flow shop scheduling problem under actual working conditions. The results showed that compared with the simulation optimization results of the standard cuckoo search, the improved cuckoo search had better stability and higher precision.

Key words: PFSP, cuckoo search, elimination probability, local search, differential evolution mechanism, makespan.

中图分类号: 

  • TP301