电子科技 ›› 2019, Vol. 32 ›› Issue (11): 18-22.doi: 10.16180/j.cnki.issn1007-7820.2019.11.004

• • 上一篇    下一篇

基于改进U-Net网络的腺体细胞图像分割算法

贝琛圆1,于海滨1,潘勉1,蒋洁1,吕炳赟2   

  1. 1. 杭州电子科技大学 电子信息学院,浙江 杭州 310018
    2. 浙江大华技术股份有限公司,浙江 杭州 310053
  • 收稿日期:2018-11-01 出版日期:2019-11-15 发布日期:2019-11-15
  • 作者简介:贝琛圆(1994-),女,硕士研究生。研究方向:图像处理。|于海滨(1979-),男,博士,副教授。研究方向:图像处理与计算机视觉。
  • 基金资助:
    浙江省自然科学基金(LY18F010014)

Gland Cell Image Segmentation Algorithm Based on Improved U-Net Network

BEI Chenyuan1,YU Haibin1,PAN Mian1,JIANG Jie1,LÜ Bingyun2   

  1. 1. School of Electronic and Information,Hangzhou Dianzi University,Hangzhou 310018,China
    2. Zhejiang Dahua Technology Co. Ltd.,Hangzhou 310053,China
  • Received:2018-11-01 Online:2019-11-15 Published:2019-11-15
  • Supported by:
    Natural Science Foundation of Zhejiang Province(LY18F010014)

摘要:

针对腺体图像在自动分割过程中由于多尺度目标和信息丢失影响导致准确率降低的问题,文中采用了一种引入注意力模块的全卷积神经网络模型。该模型遵循编码器-解码器结构,在编码网络中用空洞残差卷积层代替原有的普通卷积层,并添加空洞金字塔池;再在解码网络中加入注意力模块,使模型输出高分辨率特征图,提高对多尺度目标的分割精度。实验结果表明,提出的网络模型参数少分割精度高,对腺体图像的平均分割精度高达89.7%,具有较好的鲁棒性。

关键词: 全卷积神经网络, 编码器-解码器结构, 空洞金字塔池, 注意力模块, 高分辨率特征图, 分割精度高

Abstract:

This paper proposed a full convolutional neural network model with attention module to solve the problem that multi-scale targets and information loss affect the segmentation accuracy of gland images in the automatic segmentation process. This model followed the encoder-decoder structure. Firstly, the atrous spatial pyramid pooling was added to the encoder path, and the original residual convolution layer was replaced by the atrous residual convolution layer in the encoder path. Secondly, the attention module was added to the decoder path to make the model output high-resolution feature map and improve the segmentation accuracy of the multi-scale object. The experimental results showed that the proposed network model had fewer parameters, high segmentation precision and good robustness, besides, the average segmentation accuracy of gland images was as high as 89.7%.

Key words: full convolutional neural network, encoder-decoder structure, atrous spatial pyramid pooling, attention module, high-resolution feature map, high segmentation precision

中图分类号: 

  • TP391