电子科技 ›› 2019, Vol. 32 ›› Issue (7): 11-16.doi: 10.16180/j.cnki.issn1007-7820.2019.07.003

• • 上一篇    下一篇

基于自适应模型更新的实时跟踪算法

滕硕,王润玲   

  1. 北方工业大学 理学院,北京 100144
  • 收稿日期:2018-07-29 出版日期:2019-07-15 发布日期:2019-08-14
  • 作者简介:滕硕(1994-),女,硕士研究生。研究方向:图像处理。|王润玲(1991-),女,硕士研究生。研究方向:深度学习,图像处理,视频分析。
  • 基金资助:
    国家重点研发计划(2017YFC0821102)

Real-time Tracking Algorithm Based on Adaptive Model Update

TENG Shuo,WANG Runling   

  1. School of Sciences, North China University of Technology, Beijing 100144,China
  • Received:2018-07-29 Online:2019-07-15 Published:2019-08-14
  • Supported by:
    National Key R&D Program of China(2017YFC0821102)

摘要:

为提高分层卷积特征目标跟踪算法的速度和精度,文中提出了一种基于自适应模型更新的单层卷积特征目标跟踪算法。首先提取Pool4层的多通道的卷积特征对训练样本的类标函数进行调整,在确保跟踪精确度的同时提高了算法的速度。该算法引入了平均峰值能量比,通过比值变化情况反馈目标跟踪的结果,与稀疏模型更新策略相结合,对跟踪器进行自适应更新,提高了算法对遮挡和相似物干扰的鲁棒性。对于目标快速尺度变化问题,文中采用尺度金字塔对尺度进行评估,提高了跟踪器的泛化能力。在OTB2013和OTB2015上测试新算法,实验结果表明,该算法的平均距离精度分别为91.0%和86.8%,平均速度约43 帧/s,局域良好的鲁棒性和实时性。

关键词: 视觉跟踪, 卷积特征, 相关滤波, 模型更新, 平均峰值能量比, 类标函数

Abstract:

To improve the speed and accuracy of hierarchical convolutional features for visual tracking method, a real-time and robust object tracking algorithm based on adaptive model update and single-layer convolutional features was proposed. This method firstly extracted the multi-channel convolutional features of the Pool4 layer to adjust the label function of the training samples,which improved the speed of the algorithm while ensuring the tracking accuracy.Meanwhile, the average peak-to-correlation energy was introduced in the proposed algorithm, which feedbacked the tracking results. Combined with the sparse model update strategy, the tracker was adaptively updated to improve the robustness of the algorithm to occlusion and similar object interference. For the problem of rapid scale variation, the scale pyramid was adopted to evaluate the scale to further improve the generalization ability of our tracker. Finally, the algorithm was verified on OTB2013 and OTB2015 benchmark datasets. The experimental results showed that the average distance precision was 91.0% and 86.8%, and the average speed was 43 frames per second, showing outperforming robustness and real-time performances.

Key words: object tracking, convolutional features, correlation filter, model update, average peak-to-correlation energy, label function

中图分类号: 

  • TP391.41