电子科技 ›› 2019, Vol. 32 ›› Issue (7): 43-48.doi: 10.16180/j.cnki.issn1007-7820.2019.07.009

• • 上一篇    下一篇

基于多特征融合的人脸识别算法

苏饶,李菲菲,陈虬   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2018-07-16 出版日期:2019-07-15 发布日期:2019-08-14
  • 作者简介:苏饶(1993-),女,硕士研究生。研究方向:计算机视觉与模式识别。|李菲菲(1970-),女,博士,教授。研究方向:多媒体信息处理、图像处理与模式识别、信息检索等。|陈虬(1972-),男,博士,教授。研究方向:图像处理与模式识别、计算机视觉、信息检索等。
  • 基金资助:
    上海市高校特聘教授(东方学者) 岗位计划(ES2015XX)

Face Recognition Algorithm Based on Multiple Feature Fusion

SU Rao,LI Feifei,CHEN Qiu   

  1. School of Optical Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2018-07-16 Online:2019-07-15 Published:2019-08-14
  • Supported by:
    The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning(ES2015XX)

摘要:

针对局部二值模式描述子提取的纹理信息以及梯度幅值量化算子提取的边缘特征无法有效且全面地描述人脸信息的问题,文中提出一种基于马尔可夫稳态特征模型的多特征融合算法。首先,将通过GMQ算子提取的边缘特征以及通过LBP描述子提取的纹理特征分别与马尔可夫稳态特征模型进行融合,然后再将两者进行有效地线性加权融合。最后,在ORL数据集上进行的实验显示,文中提出算法的识别精度可达到 95.83%。与单一的特征提取算法以及常见的人脸识别算法对比结果表明了该方法的有效性。

关键词: 人脸识别, 局部二值模式, 梯度幅值量化, 马尔可夫稳态特征, 线性加权融合, ORL数据集

Abstract:

The texture information extracted by the LBP descriptor and the edge feature extracted by the GMQ operator cannot effectively and comprehensively describe the facial feature. To solve the problems, a novel multiple feature fusion algorithm based on Markov Stationary Features model was proposed. Firstly, the edge features obtained by GMQ operator as well as the texture features by LBP descriptor were fused with the MSF model respectively. Then the two MSF-based features were fused by linear weighting. Finally, experiments on the ORL dataset showed that the proposed algorithm could achieve an accuracy of 95.83%. Compared with a single feature extraction algorithm and a common face recognition algorithm, the effectiveness of the proposed method was proved.

Key words: face recognition, local binary pattern, gradient magnitude quantization, markov stationary features, linear weighting fusion, ORL database

中图分类号: 

  • TP391.41