电子科技 ›› 2019, Vol. 32 ›› Issue (7): 65-70.doi: 10.16180/j.cnki.issn1007-7820.2019.07.013

• • 上一篇    下一篇

基于人工势场法的无人机路径规划避障算法

毛晨悦,吴鹏勇   

  1. 杭州电子科技大学 电子信息学院,浙江 杭州 310016
  • 收稿日期:2018-10-26 出版日期:2019-07-15 发布日期:2019-08-14
  • 作者简介:毛晨悦(1994-),女,硕士研究生。研究方向:无人机集群控制。|吴鹏勇(1994-),男,硕士研究生。研究方向:无人机实际飞行控制研究。

UAV Path Planning Obstacle Avoidance Algorithm Based on Artificial Potential Field Method

MAO Chenyue,WU Pengyong   

  1. School of Electronic Information,Hangzhou Dianzi University,Hangzhou 310016,China
  • Received:2018-10-26 Online:2019-07-15 Published:2019-08-14

摘要:

随着无人机广泛应用于生产生活的各个方面,无人机的避障研究成为热点问题。为了提高无人机的避障性能,文中提出一种基于人工势场法的无人机路径规划避障算法。该算法通过生成预规划路径弱化了目标点对无人机的吸引作用,增加了路径的连贯性;在势场函数中加入了动态调节因子,可减少无人机轨迹不必要的转弯机动,减少机动能耗;该算法综合考虑无人机飞行中的安全性、平滑性和机动能耗,提出了一种新的代价函数,并通过使得代价函数最小化来选出最优路径。实验结果表明,该算法克服了传统人工势场的不足,在不同的飞行环境下均能够规划出安全、平滑、机动能耗小的路径,有效避开障碍物,且具有较好的适应性。

关键词: 路径规划, 人工势场, 避障, 候选路径, 代价函数, 机动能耗

Abstract:

With the widespread use of drones in all aspects of production and life, the study of the algorithms of obstacle avoidance of drones has become a hot issue.In order to improved the obstacle avoidance performance of UAV, this paper proposed an obstacle avoidance algorithm for UAV path-planning based on the artificial potential field method.The algorithm decreased the attraction of the target point to the drone by generating the pre-planning path, and extends the continuity of the path. The dynamic adjustment factor was added to the potential field function to reduce the unnecessary turning maneuvers of the drone trajectory thus reducing the consumption of Mobile energy;The algorithm considered the safety, smoothness and maneuvering energy consumption of UAVs in flight. A new cost function is proposed and the optimal path was selected by minimizing the cost function.The experimental results showed that the algorithm overcomes the shortcomings of the traditional artificial potential field, and can plan safe, smooth, and small mobile energy consumption paths in different flight environments, effectively avoiding the obstacles with better adaptability.

Key words: path planning, artificial potential field, obstacle avoidance, candidate path, cost function, motor energy consumption

中图分类号: 

  • TP242