电子科技 ›› 2020, Vol. 33 ›› Issue (12): 22-27.doi: 10.16180/j.cnki.issn1007-7820.2020.12.005

• • 上一篇    下一篇

基于特征融合的背景差分改进算法

官洪运,苏振涛,汪晨   

  1. 东华大学 信息科学与技术学院,上海 201620
  • 收稿日期:2019-09-18 出版日期:2020-12-15 发布日期:2020-12-22
  • 作者简介:官洪运(1960-),男,副教授。研究方向:图像处理、嵌入式系统。|苏振涛(1993-),男,硕士研究生。研究方向:图像处理。|汪晨(1995-),女,硕士研究生。研究方向:图像处理。
  • 基金资助:
    国家自然科学基金基金(61772130)

Improved Background Subtraction Based on Feature Fusion

GUAN Hongyun,SU Zhentao,WANG Chen   

  1. School of Information Science and Technology,Donghua University,Shanghai 201620,China
  • Received:2019-09-18 Online:2020-12-15 Published:2020-12-22
  • Supported by:
    National Natural Science Foundation of China(61772130)

摘要:

背景差分法可完整快速地分割出目标图像,但其在背景扰动与光照变化等情况下检测效果不佳。文中提出一种基于特征融合的背景差分改进算法。该算法将时空局部二值模式纹理特征以及颜色特征相融合,同时考虑两特征的置信度和相似性得分得出背景概率,继而进行前景分割,并将当前检测出的背景像素用于背景模板更新,以便更好地解决复杂背景下的目标检测问题。实验结果表明,新算法的检测效果优于其他同类算法,在保持背景差分算法鲁棒性与复杂度的同时,在背景扰动与光照变化等情况下表现出了良好的检测效果。

关键词: 背景差分, 目标检测, 特征融合, 置信度, 背景概率, 模板更新

Abstract:

The background difference method has higher reliability in completely and quickly segmenting the target image, but the detection effect is not good in the case of background disturbance and illumination variation. This study proposes an improved background difference algorithm based on feature fusion. This algorithm fuses spatio-temporal local binary pattern texture features and color features, and consideres the confidence and similarity scores of the two features to obtain the background probability, following by foreground segmentation. The background pixels are used for background template updates, which is designed to better solve the problem of target detection in complex backgrounds. The experimental results show that the detection effect of this algorithm is better than other similar algorithms. While maintaining the robustness and complexity of the background difference algorithm, it displayes good detection effect under the background disturbance and illumination changes.

Key words: background subtraction, target detection, feature fusion, confidence, background probability, template update

中图分类号: 

  • TP391.41