电子科技 ›› 2020, Vol. 33 ›› Issue (3): 50-55.doi: 10.16180/j.cnki.issn1007-7820.2020.03.010

• • 上一篇    下一篇

改进的核相关滤波跟踪算法

曾照,吴薇,汪欣   

  1. 杭州电子科技大学 电子信息学院,浙江 杭州 310018
  • 收稿日期:2019-02-14 出版日期:2020-03-15 发布日期:2020-03-25
  • 作者简介:曾照(1995-),女,硕士研究生。研究方向:图像处理。|吴薇(1963-),男,博士,教授。研究方向:机器学习,嵌入式工程,图像处理。|汪欣(1995-),女,硕士研究生。研究方向:图像处理。
  • 基金资助:
    国家自然科学基金国际(地区)合作与交流项目(61411136003)

Improved Kernelized Correlation Filter Tracking

ZENG Zhao,WU Wei,WANG Xin   

  1. School of Electronic Information,Hangzhou Dianzi University,Hangzhou 310018,China
  • Received:2019-02-14 Online:2020-03-15 Published:2020-03-25
  • Supported by:
    National Natural Science Foundation Fund:International (Regional) Cooperation and Exchange Funding Project(61411136003)

摘要:

针对核相关滤波算法在目标跟踪过程中尺度特定和遮挡判断失败的问题,文中提出一种利用自适应特征融合的位置滤波器来判断目标是否被遮挡的方法。该方法检测到峰值旁瓣比异常时,停止模型自适应更新,启动在线重检测;并结合尺度金字塔中的尺度滤波器来确定目标尺寸,从而得出精准的目标位置。实验通过复杂背景下的10组运动视频来评估改进算法的性能。与基础核相关滤波算法相比,改进算法的平均中心位置误差降低了36.683 pixel;在像素阈值设为20 pixel时,平均距离精度提升了44.632%;在边界框重叠阈值设为0.5时,重叠精度提升了46.453%。

关键词: 目标跟踪, 特征融合, 遮挡判别, 目标模型更新, 尺度滤波器, 位置滤波器

Abstract:

In order to solved the probelmof scale specificity and occlusion judgment failure of Kernel-correlation Filtering algorithm in target tracking, a position filter based on adaptive feature fusion was proposed to judge whether the target was occluded or not. When the Peak-to- Sidelobe Ratio anomaly was detected, the adaptive updating of the model was stopped and online re-detection was started, and the target size was determined by combining the scale filter in the scale pyramid, thus the accurate target location was obtained. The experiment evaluated the performance of the improved algorithm through 10 groups of motion video in complex background. Compared with the basic Kernel-correlation Filtering algorithm, the average center position error of the improved algorithm was reduced by 36.683 pixels; the average distance accuracy was increased by 44.632% when the threshold of the pixel was set to 20 pixels; and the overlap accuracy was increased by 46.453% when the boundary frame overlap threshold was set to 0.5.

Key words: target tracking, featurefusion, occlusiondiscrimination, modelupdate, scalefilter, translation filter

中图分类号: 

  • TP391.41