电子科技 ›› 2020, Vol. 33 ›› Issue (6): 1-7.doi: 10.16180/j.cnki.issn1007-7820.2020.06.001

• •    下一篇

一种基于无源射频技术的用户步态识别及认证方法

王鸽,惠维,丁菡,赵鲲,赵季中   

  1. 西安交通大学 电子与信息学部,陕西 西安 710049
  • 收稿日期:2020-04-06 出版日期:2020-06-15 发布日期:2020-06-18
  • 作者简介:王鸽(1991-),女,博士,助理教授。研究方向:无线认证与感知。惠维(1983-),男,博士,副教授。研究方向:大数据与移动计算。
  • 基金资助:
    国家自然科学基金(61802299)

Human Gait Recognition and Identification with Passive RFID

WANG Ge,XI Wei,DING Han,ZHAO Kun,ZHAO Jizhong   

  1. Faculty of Electronic and Engineering,Xi’an Jiaotong University,Xi’an 710049,China
  • Received:2020-04-06 Online:2020-06-15 Published:2020-06-18
  • Supported by:
    National Natural Science Foundation of China(61802299)

摘要:

步态识别作为一种新兴的生物特征识别技术,具有距离远、难伪造的优点,在智能监控等领域中具有广泛的应用前景。现有的步态识别方法存在着算法计算复杂、用户参与度高、设备开销较大等问题。针对这些问题,文中提出了一种基于无源射频技术的用户步态识别方法。该方法使用了门禁系统中已经广泛部署的无源射频标签,通过标签相位数据计算用户行走动态速度,利用多标签信号互补特性进行信号补偿,提取用户步态频率响应特征。实验结果显示,该方法的用户识别准确率高达91.87%,特征提取及比对的时延仅有0.129 s。在训练数据极少、用户参与度低的情况下,实现了高效率、较准确的用户步态识别及认证。

关键词: 无源射频技术, 步态识别, 用户行为感知, 移动计算, 无线感知, 物联网, 身份认证, 生物特征识别

Abstract:

As a rising biometric features recognition technology, human gait recognition has the advantages of long distance and difficult to be forged. As a result, human gait recognition has been widely used in many applications, including smart monitoring system. Current human gait recognition methods have their own problems of complex algorithms calculation, high user participation and extra hardware requirements. Aiming at these problems, a new method for user gait recognition based on passive radio frequency technology was proposed in this study. This method used the passive radio frequency tags that have been widely deployed in the access control system. The proposed method calculated the dynamic moving speed of the user by analyzing the phase profiles of tags, compensated the samples by considering multiple signal profiles of tags, and extracted the frequency domain recognition features. The experiments showed that this method could achieve an accuracy up to 91.87% , and the time delay was only 0.129 s. In conclusion, this method realized a highly efficient and accurate human gait recognition and identification with limited training data and user participation.

Key words: passive RFID, human gait recognition, human movement detection, mobile computing, wireless sensing, internet of things, user identification, biometric features recognition

中图分类号: 

  • TP391