电子科技 ›› 2021, Vol. 34 ›› Issue (1): 23-30.doi: 10.16180/j.cnki.issn1007-7820.2021.01.005

• • 上一篇    下一篇

基于渐进结构感受野和全局注意力的显著性检测

董波,周燕,王永雄   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2019-11-04 出版日期:2021-01-15 发布日期:2021-01-22
  • 作者简介:董波(1998-),男,本科。研究方向:计算机视觉。|王永雄(1970-),男,博士,教授。研究方向:智能机器人与机器视觉。
  • 基金资助:
    国家自然科学基金(61673276)

Saliency Detection by Progressive Structural Receptive Field and Global Attention

DONG Bo,ZHOU Yan,WANG Yongxiong   

  1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2019-11-04 Online:2021-01-15 Published:2021-01-22
  • Supported by:
    National Natural Science Foundation of China(61673276)

摘要:

当前的显著性检测算法在复杂场景下难以分割出完整显著性区域以及锐利的边缘细节。针对这一问题,文中提出了一种新颖的特征融合算法。该方法利用全卷积神经网络获取多个层次粗糙的初始特征并结合特征金字塔结构对其深度解析。设计渐进结构感受野模块将特征转换至不同尺度的空间进行优化,实现特征的渐进融合与传递,有选择性地增强显著性区域。采用全局注意力机制消除背景噪声并建立显著性像素之间的长距离依赖,以提高显著性区域的有效性,突出显著性目标,再通过学习融合个层次特征得到显著图。综合实验表明,在绝对误差减小的情况下,F-measure指标远超出其他7种主流方法。所提的显著性模型综合了全卷积神经网络和特征金字塔结构的优点,结合文中设计的渐进结构感受野和全局注意力机制,使得显著图更接近真值图。

关键词: 显著性检测, 全卷积神经网络, 特征金字塔, 渐进结构感受野, 全局注意力, F-measure指标

Abstract:

In view of the current deficiencies that the previous saliency detection algorithms are difficult to segment the complete salient region and sharp edge details in complex scenes, a novel feature fusion of saliency detection model is proposed in this paper. The proposed algorithm utilizes full convolution neural network to obtain the initial features of multi-level roughness and combines the feature pyramid structure to analyze its depth. In order to realize the gradual fusion and transmission of features, the progressive structural receptive field module is designed to transform features to different scales of space for optimization. The global attention mechanism is used to eliminate the background noise and establish the long-distance dependence between the saliency pixels, so as to improve the effectiveness of the saliency region, highlight the saliency region, and then obtains the saliency map by learning and fusing the hierarchical features. The comprehensive experiment show that the F-measure index is far beyond the other seven mainstream methods when the absolute error is reduced. The proposed saliency model combines the advantages of full convolution neural network and feature pyramid structure, and combines the gradual structure receptive field and global attention mechanism designed in this study to make the saliency map closer to the truth map.

Key words: saliency detection, fully convolutional networks, feature pyramid, progressive structural receptive field, global attention, F-measure index

中图分类号: 

  • TP391