[1] |
杨则允, 李猛, 孙钦鹏. 四旋翼无人机控制系统仿真设计[J]. 计算机测量与控制, 2019, 27(4):68-71.
|
|
Yang Zeyun, Li Meng, Sun Qinpeng. Simulation design of quad-rotor UAV control system[J]. Computer Measurement & Control, 2019, 27(4):68-71.
|
[2] |
梅武军, 伍家成, 杨扬戬, 等. 一种小型无人机自主飞控系统设计与实现[J]. 电子科技, 2017, 30(7):106-109.
|
|
Mei Wujun, Wu Jiacheng, Yang Yangjian, et al. A small unmanned aerial vehicle autonomous fight control system design[J]. Electronic Science and Technology, 2017, 30(7):106-109.
|
[3] |
冯培晏. 四旋翼无人机建模与PID控制器设计[J]. 工业设计, 2018(6):135-137.
|
|
Feng Peiyan. Quadrotor UAV modeling and PID controller design[J].Industrial Design, 2018(6):135-137.
|
[4] |
梅武军. 基于ROS的多旋翼飞行器飞行控制系统的开发与设计[J]. 电子科技, 2017, 30(10):23-25.
|
|
Mei Wujun. Development and design of flight control system for multi rotor vehicle based on ROS[J]. Electronic Science and Technology, 2017, 30(10):23-25.
|
[5] |
郑健. 基于无模型自适应控制方法的四旋翼飞行器姿态调整[D]. 北京:北京交通大学, 2015.
|
|
Zheng Jian. Quad-rotor aircraft attitude adjustment based on model-free adaptive control[D]. Beijing:Beijing Jiaotong University, 2015.
|
[6] |
高青, 袁亮, 吴金强. 基于新型LQR的四旋翼无人机姿态控制[J]. 制造业自动化, 2014, 36(10):13-16.
|
|
Gao Qing, Yuan Liang, Wu Jinqiang. Attitude control of a quadrotor UAV based on new LQR[J]. Manufacturing Automation, 2014, 36(10):13-16.
|
[7] |
李珺, 王娜, 花玉, 等. 基于干扰观测器的四旋翼飞行器反步控制研究[J]. 计算机仿真, 2020, 37(4):28-33.
|
|
Li Jun, Wang Na, Hua Yu, et al. Study on disturbance observer-based backstepping control for quadrotor[J]. Computer Simulation, 2020, 37(4):28-33.
|
[8] |
张志赟, 谢习华. 四旋翼无人机模型参考自适应滑模控制[J]. 制造业自动化, 2020, 42(2):9-15.
|
|
Zhang Zhiyun, Xie Xihua. Model reference adaptive sliding mode control for quadrotor UVA[J]. Manufacturing Automation, 2020, 42(2):9-15.
|
[9] |
全权. 多旋翼飞行器设计与控制[M]. 北京: 电子工业出版社, 2018.
|
|
Quan Quan. Multi-rotor aircraft design and control[M]. Beijing: Publishing House of Electronics Industry, 2018.
|
[10] |
徐大远, 王英健, 陈冠军, 等. 四轴飞行器的动力学建模和位置控制研究[J]. 电子科技, 2015, 28(1):69-72.
|
|
Xu Dayuan, Wang Yingjian, Chen Guanjun, et al. Research on dynamic modeling and position control of the quadcopter[J]. Electronic Science and Technology, 2015, 28(1):69-72.
|
[11] |
Wu X W, Xiao B, Qu Y H. Modeling and sliding mode-based attitude tracking control of a quadrotor UAV with time-varying mass[J]. ISA Transactions, 2019(7):266-279.
|
[12] |
方璇, 钟伯成. 基于人工鱼群PID控制算法的四旋翼飞行器控制[J]. 电子科技, 2015, 28(12):52-55.
|
|
Fang Xuan, Zhong Bocheng. Four-rotor unmanned aerial vehicles control system based on PID controller of artificial fish swarm algorithm[J]. Electronic Science and Technology, 2015, 28(12):52-55.
|
[13] |
徐会丽. 多旋翼无人机飞行控制算法研究[D]. 重庆:中国科学院大学, 2017.
|
|
Xu Huili. Research on flight control algorithm of multi-rotor UAV[D]. Chongqing:University of Chinese Academy of Sciences, 2017.
|
[14] |
温浩, 赵国庆. 基于MATLAB神经网络工具箱的线性神经网络实现[J]. 电子科技, 2005, 18(1):26-29.
|
|
Wen Hao, Zhao Guoqing. Realization of the linear network based on the neural network tool kit in MATLAB[J]. Electronic Science and Technology, 2005, 18(1):26-29.
|
[15] |
Paiva E, Llano M, Rodas J, et al. Design and implementati- on of a VTOL flight transition mechanism and development of a mathematical model for a tilt rotor UAV [C].Concepción:IEEE International Conference on Automation, 2018.
|
[16] |
张硕, 张学典, 秦敏, 等. 基于Backstepping模糊自适应的四旋翼飞行器控制[J]. 电子科技, 2017, 30(2):54-57.
|
|
Zhang Shuo, Zhang Xuedian, Qin Min, et al. Adaptive fuzzy backstepping control of quadrotors[J]. Electronic Science and Technology, 2017, 30(2):54-57.
|
[17] |
熊中刚, 刘忠, 王寒迎, 等. RBF神经网络增量式PID自动转向控制系统设计[J]. 农机化研究, 2021, 43(4):27-32.
|
|
Xiong Zhonggang, Liu Zhong, Wang Hanying, et al. Design of automatic steering control system based on RBF neural network incremental PID[J]. Journal of Agricultural Mechanization Research, 2021, 43(4):27-32.
|
[18] |
黄旋, 陈光明, 赵潮. 基于STM32和μC/OS-Ⅲ的服务机器人设计与实现[J]. 机器人技术与应用, 2020(1):39-43.
|
|
Huang Xuan, Chen Guangming, Zhao Chao. A service robot design based on the STM32 and μC/OS-Ⅲ[J]. Robot Technique and Application, 2020(1):39-43.
|