电子科技 ›› 2021, Vol. 34 ›› Issue (10): 51-55.doi: 10.16180/j.cnki.issn1007-7820.2021.10.008

• • 上一篇    下一篇

基于神经网络PID算法的四旋翼无人机优化控制

郭婕,金海,沈昕格   

  1. 浙江理工大学 信息学院,浙江 杭州 310018
  • 收稿日期:2020-06-30 出版日期:2021-10-15 发布日期:2021-10-18
  • 作者简介:郭婕(1997-),女,硕士研究生。研究方向:旋翼无人机飞行控制。|金海(1970-),男,博士,副教授。研究方向:电机及控制技术、电力电子技术、可再生能源发电并网技术。
  • 基金资助:
    国家自然科学基金(51677172)

Optimization Control of Quadrotor UAVs Based on Neural Network PID Algorithm

GUO Jie,JIN Hai,SHEN Xinge   

  1. School of Information Science and Technology,Zhejiang Sci-Tech University,Hangzhou 310018,China
  • Received:2020-06-30 Online:2021-10-15 Published:2021-10-18
  • Supported by:
    National Natural Science Foundation of China(51677172)

摘要:

针对四旋翼无人机系统的时变性、非线性等问题,文中提出了一种基于神经网络PID的无人机姿态控制算法。该算法具有PID算法的强自适应能力和神经网络的强抗干扰能力。在建立四旋翼无人机刚体运动学模型和动力学模型基础上,搭建了四旋翼无人机MATLAB-Simulink姿态仿真控制模型,对比了神经网络PID控制算法与传统PID、串级PID控制算法对无人机3个姿态角的控制效果。结果表明,相比其他两种控制算法,神经网络PID控制算法调节过渡时间从4 s降到1 s,输出稳定后的系统静态误差只有0.5%,说明该控制算法控制精度高,具有更好的静态特性和动态特性。

关键词: 四旋翼, 无人机, 动力学建模, 仿真, 传统PID, 串级PID, 神经网络PID, 姿态控制

Abstract:

In this study, an attitude control algorithm based on neural network PID is proposed to solve the time-varying and nonlinear problems of the quadrotor UAVs system. The algorithm has the strong adaptive ability of PID algorithm and the strong anti-interference ability of neural network. Based on the establishment of the rigid body kinematics model and dynamics model of the quadrotor UAVs, the attitude simulation control model of the quadrotor UAV MATLAB-Simulink is built, and the control effect of the neural network PID control algorithm, traditional PID and cascade PID control algorithm on the three attitude angles of the UAVs is compared. The results show that compared with the other two control algorithms, the transition time of neural network PID control algorithm is reduced from 4 s to 1 s, and the static error of the system after output stabilization is only 0.5%, indicating that the neural network PID control algorithm has high control precision and better static and dynamic characteristics.

Key words: quadrotor, unmanned aerial vehicles, dynamics modeling, simulation, traditional PID, cascade PID, neural network PID, attitude control

中图分类号: 

  • TP273