电子科技 ›› 2022, Vol. 35 ›› Issue (11): 64-71.doi: 10.16180/j.cnki.issn1007-7820.2022.11.010

• • 上一篇    下一篇

差分隐私模糊聚类位置保护方法

林静,胡德敏,王揆豪   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2021-03-28 出版日期:2022-11-15 发布日期:2022-11-11
  • 作者简介:林静(1996-),女,硕士研究生。研究方向:隐私保护、信息安全。|胡德敏(1963-),男,博士,副教授。研究方向:计算机网络、分布式计算、云计算|王揆豪(1994-),男,硕士研究生。研究方向:计算机视觉、深度学习。
  • 基金资助:
    国家自然科学基金(61170277);国家自然科学基金(61472256);上海市教委科研创新重点项目(12zz137);上海市一流学科建设项目(S1201YLXK)

Differential Privacy Fuzzy Clustering Location Protection Method

LIN Jing,HU Demin,WANG Kuihao   

  1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2021-03-28 Online:2022-11-15 Published:2022-11-11
  • Supported by:
    National Natural Science Foundation of China(61170277);National Natural Science Foundation of China(61472256);Key Project of Scientific Research and Innovation of Shanghai Municipal Education Commission(12zz137);Shanghai First Class Discipline Construction Project(S1201YLXK)

摘要:

针对现有差分隐私聚类位置保护方法存在初始值敏感、离散数据不适用、误差较大的问题,文中提出了一种差分隐私模糊聚类位置保护方法。首先,通过高斯核函数将点映射到特征空间,由于核函数计算量相对较小,计算效率有了显著提升;然后,将差分隐私与改进的模糊C均值聚类算法相结合,使得每一组输入数据不再仅隶属于某一特定的类,而是以隶属程度来表现;最后,文中将满足差分隐私约束的拉普拉斯噪声添加到聚类集合的质心点中,得到每个点的扰动位置,并使用扰动位置进行查询。实验结果表明,在保障位置隐私安全的前提下,差分隐私模糊聚类位置保护方法降低了查询误差,提升了算法效率。

关键词: 差分隐私, 隐私保护, 拉普拉斯机制, 核函数, 位置保护, 聚类算法, DPK-F, KFCM

Abstract:

In view of the problems of sensitive initial value, inapplicability of discrete data and large error in the existing differential privacy clustering location protection methods, a differential privacy fuzzy clustering location protection method is proposed in this study. Firstly, the points are mapped to the feature space by Gaussian kernel function, and the computational efficiency is significantly improved due to the relatively small amount of computation. Secondly, the differential privacy is combined with the improved fuzzy C-means clustering algorithm, so that each group of input data no longer belongs to a specific class, but to the degree of membership. Finally, the Laplacian noise satisfying the differential privacy constraint is added to the centroid of the clustering set to obtain the disturbance position of each point, and the disturbance position is used to query. The experimental results show that the differential privacy fuzzy clustering location protection method reduces the query error and improves the efficiency of the algorithm under the premise of ensuring the location privacy security.

Key words: differential privacy, privacy preserving, Laplacian mechanism, kernel function, location preserving, clustering algorithm, DPK-F, KFCM

中图分类号: 

  • TP309