电子科技 ›› 2024, Vol. 37 ›› Issue (5): 88-94.doi: 10.16180/j.cnki.issn1007-7820.2024.05.012

• • 上一篇    

基于改进蚁群算法的机器人全局路径规划

王艳春, 郭永峰, 夏颖, 王洋洋   

  1. 齐齐哈尔大学 通信与电子工程学院,黑龙江 齐齐哈尔 161006
  • 收稿日期:2022-12-24 出版日期:2024-05-15 发布日期:2024-05-21
  • 作者简介:王艳春(1972-),女,教授。研究方向:机器人室内定位与导航、嵌入式系统。
  • 基金资助:
    黑龙江省自然基金联合引导项目(LH2020F050);黑龙江省省属本科高校基本科研业务费科研项目(145209150);齐齐哈尔大学学位与研究生项目(JGXM_QUG_2020011)

Research on Robot Global Path Planning Based on Improved Ant Colony Algorithm

WANG Yanchun, GUO Yongfeng, XIA Ying, WANG Yangyang   

  1. School of Communication and Electronic Engineering,Qiqihar University,Qiqihar 161006,China
  • Received:2022-12-24 Online:2024-05-15 Published:2024-05-21
  • Supported by:
    Heilongjiang Provincial Natural Fund Co-Guided Project(LH2020F050);Heilongjiang Provincial Undergraduate University Basic Research Business Fund Research Project(145209150);Qiqihar University Degree and Postgraduate Programmes(JGXM_QUG_2020011)

摘要:

针对传统蚁群算法存在初始信息素缺乏、收敛速度慢以及无法有效躲避障碍物等问题,文中提出了一种基于改进蚁群算法的全局路径规划。引入正态分布函数改进传统启发函数,提高了算法效率,缩短了算法收敛所需时间。自适应调整信息素挥发系数,限定信息素范围,避免过早收敛。对算法路径平滑处理,缩短路径长度,从而实现机器人的全局路径规划。仿真结果表明,在20×20环境下,文中算法平均迭代次数比传统蚁群算法减少了28代,收敛速度更快。平均拐点减少了33.3%,使路径更为平滑,克服了初始信息素缺乏,加快了收敛速度,减少了拐点数量,能够有效躲避环境中的障碍物,证明了该算法的可行性。

关键词: 环境建模, 改进蚁群算法, 全局路径规划算法, 正态分布函数, 改进启发函数, 信息素挥发系数, 限定信息素浓度, 路径平滑

Abstract:

In response to the problems of traditional ant colony algorithm such as lack of initial pheromone, slow convergence speed and inability to effectively avoid obstacles, this study proposes a global path planning based on improved ant colony algorithm.The introduction of a normal distribution function improves the traditional heuristic function, greatly improving the efficiency of the algorithm and shortening the time required for convergence; adaptively adjusting the pheromone volatility coefficient to limit the pheromone range and avoid premature convergence; and smoothing the algorithm path to shorten the path length, thus realising global path planning for the robot.Simulation results show that under a 20×20 environment, the average number of iterations of the proposed algorithm is 28 generations less than that of the traditional ant colony algorithm, resulting in faster convergence, the average number of inflection points is reduced by 33.3%, making the path smoother, overcoming the lack of initial pheromone, speeding up convergence, reducing the number of inflection points, and enabling effective avoidance of obstacles in the environment, demonstrating the feasibility of the algorithm.

Key words: environmental modeling, improved ant colony algorithm, global path planning algorithm, normal distribution function, improved the heuristic function, pheromone volatility factor, limiting pheromone concentration, path smoothing

中图分类号: 

  • TP242.6