电子科技 ›› 2019, Vol. 32 ›› Issue (5): 16-20.doi: 10.16180/j.cnki.issn1007-7820.2019.05.004

• • 上一篇    下一篇

基于遗传-细菌觅食组合算法的非线性模型优化

李亚品,邹德旋,段纳   

  1. 江苏师范大学 电气工程及自动化学院,江苏 徐州 221116
  • 收稿日期:2018-05-07 出版日期:2019-05-15 发布日期:2019-05-06
  • 作者简介:李亚品(1977-),女,讲师。研究方向:群体智能优化算法及其应用。|邹德旋(1982-),男,博士,副教授。研究方向:群体智能优化算法。|段纳(1981-),女,博士,副教授。研究方向:非线性系统的自适应控制。
  • 基金资助:
    国家自然科学基金(61403174);国家自然科学基金(61573172)

Optimization of Nonlinear Model Based on GA-BFO Combination Algorithm

LI Yapin,ZOU Dexuan,DUAN Na   

  1. School of Electrical Engineering and Automation,Jiangsu Normal University,Xuzhou 221116,China
  • Received:2018-05-07 Online:2019-05-15 Published:2019-05-06
  • Supported by:
    National Natural Science Foundation of China(61403174);National Natural Science Foundation of China(61573172)

摘要:

文中提出一种遗传-细菌觅食组合优化算法以解决非线性模型优化问题。该方法先使用遗传算法进行全局搜索,并缩小最优解的搜索范围;再使用细菌觅食优化算法在该局部范围内执行局部搜索。这种组合搜索策略可以增强算法的收敛性,并能有效地均衡全局搜索和局部搜索。文中利用单峰、多峰和复杂多峰等非线性函数模型验证所提算法的性能。实验结果表明,组合算法的计算精度和效率分别比遗传算法和细菌觅食优化算法提高了30%和50%,表明该组合算法具有更快的收敛速度,更高的求解精度,适用于大规模多极值的非线性问题。

关键词: 遗传优化, 细菌觅食优化, 组合算法, 全局搜索, 局部搜索, 非线性模型

Abstract:

A combination of genetic algorithm and bacterial foraging optimization algorithm (GA-BFO) was presented to solve the nonlinear model optimization problems. Firstly, GA-BFO employed genetic algorithm to conduct global search and reduce the exploiting range of global optimum. Secondly, GA-BFO employed the bacterial foraging optimization algorithm to conduct local search in the reduced range. This combined search strategy could both enhance the convergence of GA-BFO and balance global search and local search. Three typical nonlinear function models including unimodal, multi-peak and complex multi-peak models were used to test the performance of the proposed algorithm. Experimental results showed that GA-BFO could achieve 30% and 50% precision improvements for GA and BFO respectively. Above results indicated the combined optimization approach had faster convergence speed and higher calculation precision, and it was more suitable for solving large-scale nonlinear problems with multiple optima.

Key words: genetic algorithm, bacterial foraging optimization, combination algorithm, global search, local search, nonlinear model

中图分类号: 

  • TP18