电子科技 ›› 2019, Vol. 32 ›› Issue (5): 11-16.doi: 10.16180/j.cnki.issn1007-7820.2019.05.003

• • 上一篇    下一篇

基于改进遗传算法的配电网无功优化研究

陈强1,刘瑾1,杨海马2,刘海珊1,韦钰1   

  1. 1. 上海工程技术大学 电子电气工程学院,上海 201620
    2. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2018-04-19 出版日期:2019-05-15 发布日期:2019-05-06
  • 作者简介:陈强(1994-),男,硕士研究生。研究方向:算法设计及优化研究等。|刘瑾(1978-),女,博士,副教授。研究方向:智能检测与控制等。
  • 基金资助:
    国家自然科学基金青年基金(61701296);上海市自然科学基金(17ZR1443500)

Research on Reactive Power Optimization of Power Distribution Network Based on Improved Genetic Algorithm

CHEN Qiang1,LIU Jin1,YANG Haima2,LIU Haishan1,WEI Yu1   

  1. 1. School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China
    2. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2018-04-19 Online:2019-05-15 Published:2019-05-06
  • Supported by:
    National Natural Science Foundation of China(61701296);Shanghai Natural Science Foundation(17ZR1443500)

摘要:

有效降低配电网有功损失是配电网安全、经济运行的重要课题。为解决局部地区网损偏大的问题,文中将改进的遗传算法用于无功补偿优化。在考虑配电网拓扑结构的同时,设计了自适应遗传算子并构造了指数型适应度函数来提升遗传算法收敛速度和精度,充分发挥了遗传算法的全局随机快速搜索能力。优化某16节点算例的结果表明,配电网有功网损由6.76%下降到5.16%,电压达标率从70.61%提高到92.86%,表明该方法能够提高全局寻优精度,改善区域网络电压质量,同时也证明了该改进遗传算法用于无功优化的可行性和实用性。

关键词: 配电网, 多目标无功优化, 降低网损, 改进遗传算法, 自适应算子

Abstract:

Effectively reducing the loss of distribution network active power has been an important issue in the safe and economic operation of distribution networks. In order to solve the problem of large network loss in local areas,an improved genetic algorithm was proposed for reactive power compensation optimization. While considering the topological structure of distribution network, an adaptive genetic operator was designed and an exponential fitness function was constructed to promote the convergence speed and precision of genetic algorithm. In this way, the global random search capability of genetic algorithm could be fully utilized. The results of optimizing a 16-node study showed that the active network loss of the distribution network dropped from 6.76% to 5.16%,and the voltage qualification rate increased from 70.61% to 92.86%,indicating both the global optimization accuracy and the voltage quality of the regional network were improved. In addition, it also proved that this improved genetic algorithm is feasible for reactive power optimization.

Key words: distribution network, multi objective reactive power optimization, reduction of net loss, improved genetic algorithm, adaptive operator

中图分类号: 

  • TP714