电子科技 ›› 2019, Vol. 32 ›› Issue (5): 44-49.doi: 10.16180/j.cnki.issn1007-7820.2019.05.009

• • 上一篇    下一篇

基于多特征融合的视频检索算法

侯严明,李菲菲,陈虬   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2018-05-17 出版日期:2019-05-15 发布日期:2019-05-06
  • 作者简介:侯严明(1993-),男,硕士研究生。研究方向:计算机视觉与模式识别。|李菲菲(1970-),女,博士,教授。研究方向:多媒体信息处理、图像处理与模式识别、信息检索等。|陈虬(1972-),男,博士,教授。研究方向:图像处理与模式识别、计算机视觉、信息检索等。
  • 基金资助:
    上海市高校特聘教授东方学者岗位计划(ES2015XX)

Video Retrieval Algorithm Based on Multiple Feature Fusion

HOU Yanming,LI Feifei,CHEN Qiu   

  1. School of Optical Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2018-05-17 Online:2019-05-15 Published:2019-05-06
  • Supported by:
    The Program for Professor of Special Appointment Eastern Scholar at Shanghai Institutions of Higher Learning(ES2015XX)

摘要:

随着视频等多媒体数据呈指数式迅猛增长,高效快速的视频检索算法引起越来越多的重视。传统的图像特征如颜色直方图以及尺度不变特征变换等对视频拷贝检测中检索速度以及检测精度等问题无法达到很好的效果,因此文中提出一种多特征融合的视频检索方法。该方法利用前后两帧的时空特征进行基于滑动窗口的时间对齐算法,以达到减少检索的范围和提高检索速度的目的。该算法对关键帧进行灰度序列特征、颜色相关图特征以及SIFT局部特征提取,然后融合全局特征和局部特征两者的优势,从而提高检测精度。实验结果表明,该方法可达到较好的视频检索精度。

关键词: 视频检索, 滑动窗口, 多特征融合, 颜色自相相图, 时空特征, 关键帧

Abstract:

Due to the exponential growth of video data on the World Wide Web, efficient and fast video retrieval algorithm has attracted a lot of attentions. Because the traditional video image features, such as color histogram and scale invariant feature transform could not obtain promising results on the retrieval speed and detection precision in video copy detection, a video retrieval algorithm using multiple feature fusion was proposed in this paper. Using the temporal and spatial characteristics of the two frames before and after, the time alignment algorithm based on sliding window was applied to reduce the retrieval range and improve retrieval speed. In order to improve the detection precision, this algorithm performed the global feature, the color correlation graph, and the local feature extraction of the SIFT, and then combined the advantages of both global and local features. Experimental results showed that the proposed method could achieve better performance.

Key words: video retrieval, sliding window, multiple feature fusion, color correlogram, temporal and spatial characteristics, key frame

中图分类号: 

  • TP391.41