电子科技 ›› 2019, Vol. 32 ›› Issue (12): 17-21.doi: 10.16180/j.cnki.issn1007-7820.2019.12.004

• • 上一篇    下一篇

基于主成分分析的实时全网络异常检测方法

张天奇,张顺康   

  1. 南京航空航天大学 计算机科学与技术学院,江苏 南京 211106
  • 收稿日期:2018-12-05 出版日期:2019-12-15 发布日期:2019-12-24
  • 作者简介:张天奇(1995-),男,硕士研究生。研究方向:网络功能虚拟化,网络测量。|张顺康(1995-),男,硕士研究生。研究方向:计算机网络、网络功能虚拟化。
  • 基金资助:
    江苏省研究生科研与实践创新计划项目(KYCX18_0308)

A Real-time Full Network Performance Anomaly Detection Algorithm Based on Principal Component

ZHANG Tianqi,ZHANG Shunkang   

  1. School of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
  • Received:2018-12-05 Online:2019-12-15 Published:2019-12-24
  • Supported by:
    Postgraduate Research & Practice Innovation Programe of Jiangsu Province(KYCX18_0308)

摘要:

网络性能异常检测对于促进网络健康发展具有重要意义。针对目前全网性能异常检测大多通过离线检测,无法提供良好的实时在线检测性能的问题。文中采用主成分分析方法建立异常检测模型,结合历史性能数据和近期网络性能波动状况去适应性调整网络异常判断阈值,实现了异常检测的实时在线化,并在NFV网络上进行数据采集。实验结果表明,与被广泛采用的离线检测方法比较,该方法在检测的误报率上减少了5%8%,对于网络运行商而言具有较大的使用价值。

关键词: 异常检测, 网络性能矩阵, 主成分分析, 滑动窗口, 动态阈值, 在线实时检测

Abstract:

Network performance anomaly detection is of great significance to promote the healthy development of the network. In order to solve the problem that the existing anomaly detection methods are mostly offline and cannot provide good real-time online detection performance, the principal component analysis method was used to establish the anomaly detection model, and the network anomaly detection threshold was adjusted adaptively by combining historical performance data with recent network performance fluctuations. The real-time online anomaly detection was realized and the data was collected on NFV network. The experimental results showed that the proposed method reduced the false alarm rate by 5% to 8% compared with the offline detection method which was widely used, indicating the greater use value of the proposed method for network operators.

Key words: anomalydetection, network performance matrix, principal component analysis, slidingwindow, dynamicthreshold, online real-time monitoring

中图分类号: 

  • TP915.08