电子科技 ›› 2020, Vol. 33 ›› Issue (3): 6-11.doi: 10.16180/j.cnki.issn1007-7820.2020.03.002

• • 上一篇    下一篇

基于个体排序的自适应遗传算法

丁家会,张兆军   

  1. 江苏师范大学 电气工程及自动化学院,江苏 徐州 221116
  • 收稿日期:2019-02-22 出版日期:2020-03-15 发布日期:2020-03-25
  • 作者简介:丁家会(1995-),女,硕士研究生。研究方向:智能优化算法。|张兆军(1981-),男,博士,副教授。研究方向:智能优化算法、机器学习。
  • 基金资助:
    国家自然科学基金(61503165);国家自然科学基金(61573172);江苏师范大学科研创新计划校立院助项目(2018YXJ088)

Adaptive Genetic Algorithm Based on Individual Ordering

DING Jiahui,ZHANG Zhaojun   

  1. School of Electrical Engineering and Automation,Jiangsu Normal University,Xuzhou 221116,China
  • Received:2019-02-22 Online:2020-03-15 Published:2020-03-25
  • Supported by:
    National Natural Science Foundation of China(61503165);National Natural Science Foundation of China(61573172);Jiangsu Normal University Research and Innovation Program School Establishment Project(2018YXJ088)

摘要:

针对遗传算法容易陷入局部最优的缺点,文中提出了一种基于个体排序的自适应遗传算法。在传统自适应遗传算法中,交叉概率和变异概率的自适应更新是依据个体的适应度值进行的。但是在算法后期,由于种群陷入局部极值,使得值的差异变小,更新时难以体现个体差异。借鉴序优化的思想,在所提改进算法中,将个体适应度值排序,并采用排序号替代适应度值。这种采用序差异取代值差异的方法能够增大种群中、后期的交叉概率和变异率的值,有利于避免算法陷入早熟收敛。文中对几种标准的函数进行了测试,结果表明,改进后的算法在收敛速度和收敛精度方面优于其他两种自适应改进算法。

关键词: 遗传算法, 排序号, 自适应, 适应度值, 测试函数, 收敛

Abstract:

Aiming at the shortcomings of genetic algorithm which is easy to fall into local optimum, an adaptive genetic algorithm based on individual ordering was proposed in this study. In the traditional adaptive genetic algorithm, the adaptive update of the crossover probability and the mutation probability was based on the individual fitness value. But in the later stage of the algorithm, as the population falled into the local extreme value, the difference of the value became smaller, and it was difficult to reflect individual differences when updating. Referring to the idea of order optimization, in the proposed improved algorithm, the individual fitness values were sorted, and the ordering number was used instead of the fitness value. This method of replacing the value difference by using the order difference could increase the value of the crossover probability and the mutation rate in the middle and the late stage of the population, which was beneficial to avoid the premature convergence of the algorithm. Several standard functions were tested, which showed that the improved algorithm was superior to the other two adaptive improved algorithms in terms of convergence speed and convergence precision.

Key words: genetic algorithm, sorting number, self-adaptation, fitness value, test function, convergence

中图分类号: 

  • TN911