[1] |
Carvalho M M O, Faria D G, Pérez M G, et al. Review on mathematical models for travelling-grate iron oxide pellet induration furnaces[J]. Energy Procedia, 2017(120):588-595.
|
[2] |
Wong G, Fan X, Gan M, et al. Improvement on the thermal cracking performance of pellets prepared from ultrafine iron ore[J]. Powder Technology, 2018(342):873-879.
|
[3] |
Cavalcanti P P, De Carvalho R M, Andersom S, et al. Surface breakage of fired iron ore pellets by impact[J]. Powder Technology, 2019(342):735-743.
|
[4] |
Elsheikh A H, Guo J, Huang Y, et al. Temperature field sensing of a thin-wall component during machining: Numerical and experimental investigations[J]. International Journal of Heat and Mass Transfer, 2018, 126(8):935-945.
doi: 10.1016/j.ijheatmasstransfer.2018.06.006
|
[5] |
Wang Z Z, Kamimoto T, Deguchi Y, et al. Two dimensional temperature measurement characteristics in pulverized coal combustion field by computed tomography-tunable diode laser absorption spectroscopy[J]. Applied Thermal Engineering, 2020(171):115066-115073.
|
[6] |
Yang G M, Fan X H, Chen X L, et al. Intelligent control of grate-kiln-cooler process of iron ore pellets using a combination of expert system approach and takagi-sugeno fuzzy model[J]. Journal of Iron & Steel Research International, 2016, 23(5):434-441.
|
[7] |
余航. 计算机数学建模中改进遗传算法与最小二乘法应用[J]. 电子设计工程, 2020, 28(1):15-18.
|
|
Yu Hang. Application of improved genetic algorithm and least square method in computer mathematical modeling[J]. Electronic Design Engineering, 2020, 28(1):15-18.
|
[8] |
Markovic S, Bryan J L, Turakhanov A, et al. In-situ heavy oil viscosity prediction at high temperatures using low-field NMR relaxometry and nonlinear least squares[J]. Fuel, 2020(260):116328-116339.
|
[9] |
Liu Y, Peng J, Wang Y. Application of partial least squares regression in detecting the important landscape indicators determining urban land surface temperature variation[J]. Landscape Ecology, 2018(33):1133-1145.
|
[10] |
Jia R, Xiong Q, Xu G, et al. A method for two-dimensional temperature field distribution reconstruction[J]. Applied Thermal Engineering, 2017(111):961-967.
|
[11] |
Zhou X Z, Dong C L, Zhao C P, et al. Temperature-field reconstruction algorithm based on reflected sigmoidal radial basis function and QR decomposition[J]. Applied Thermal Engineering, 2020(171):114987-114999.
|
[12] |
Wang X D, Wang G J, Chen H, et al. Real-time temperature field reconstruction of boiler drum based on fuzzy adaptive Kalman filter and order reduction[J]. International Journal of Thermal Sciences, 2017(113):145-153.
|
[13] |
Ma T, Liu Y, Cao C. Neural networks for 3D temperature field reconstruction via acoustic signals[J]. Mechanical Systems and Signal Processing, 2019, 126(3):392-406.
doi: 10.1016/j.ymssp.2019.02.037
|
[14] |
Liu Y Z, Chen J, Lü Y Z, et al. Temperature simulation of greenhouse with CFD methods and optimal sensor placement[J]. Sensors & Transducers, 2014(26):40-44.
|
[15] |
Fu Y, Sha M, Wu C, et al. Thermal modeling for a HVAC controlled real-life auditorium[C]. Madrid:International Conference on Distributed Computing Systems,IEEE, 2014.
|
[16] |
Jiang C, Soh Y C, Li H. Sensor and CFD data fusion for airflow field estimation[J]. Applied Thermal Engineering, 2015, 92(5):149-161.
doi: 10.1016/j.applthermaleng.2015.09.078
|
[17] |
Jo T, Koo B, Kim H, et al. Effective sensor placement in a steam reformer using gappy proper orthogonal decomposition[J]. Applied Thermal Engineering, 2019, 154(3):419-432.
doi: 10.1016/j.applthermaleng.2019.03.089
|
[18] |
李洋. 球团链篦机鼓风干燥段多物理场耦合机理研究[D]. 镇江:江苏大学, 2018.
|
|
Li Yang. Study on multiphysics coupling mechanism in updraft drying section of the pellets grate[D]. Zhenjiang:Jiangsu University, 2018.
|
[19] |
蓝机满. 基于径向基神经网络的粒子群表面缺陷识别算法[J]. 电子科技, 2019, 32(5):92-95.
|
|
Lan Jiman. Particle swarm optimization surface defect recognition algorithm based on radial basis neural network[J]. Electronic Science and Technology, 2019, 32(5):92-95.
|
[20] |
陈强, 刘瑾, 杨海马, 等. 基于改进遗传算法的配电网无功优化研究[J]. 电子科技, 2019, 32(5):11-15.
|
|
Chen Qiang, Liu Jin, Yang Haima, et al. Research on reactive power optimization of power distribution network based on improved genetic algorithm[J]. Electronic Science and Technology, 2019, 32(5):11-15.
|
[21] |
吴延凯, 张伟, 马盈满, 等. 基于GA-PSO融合算法的而自由度PID参数优化[J]. 电子科技, 2019, 32(10):54-59.
|
|
Wu Yankai, Zhang Wei, Ma Yingman, et al. Two degree of freedom PID parameter optimization based on GA-PSO fusion algorithm[J]. Electronic Science and Technology, 2019, 32(10):54-59.
|
[22] |
何兴. 球团矿热态参数指标机理—神经网络混合建模的研究[D]. 沈阳:东北大学, 2011.
|
|
He Xing. Mixed modelling for the thermal parameter of pellet mine based on mechanism-neural networks[D]. Shenyang:Northeastern University, 2011.
|
[23] |
崔频, 王敏. 一种虚拟力导向遗传算法的无线传感器网络优化部署策略[J]. 电子设计工程, 2017, 25(7):87-91.
|
|
Cui Pin, Wang Min. An optimal deployment strategy for wireless sensor networks based on vortual face oriented genetic algorithm[J]. Electronic Design Engineering, 2017, 25(7):87-91.
|