电子科技 ›› 2019, Vol. 32 ›› Issue (10): 54-59.doi: 10.16180/j.cnki.issn1007-7820.2019.10.011

• • 上一篇    下一篇

基于GA-PSO融合算法的二自由度PID参数优化

吴延凯,张伟,马盈满,李佳阳   

  1. 上海理工大学 光电信息与计算机工程学院,上海200093
  • 收稿日期:2018-10-31 出版日期:2019-10-15 发布日期:2019-10-29
  • 作者简介:吴延凯 (1992-),男,硕士研究生。研究方向:控制理论。|张伟 (1981-),男,博士,副教授。研究方向:控制理论,最优控制等。
  • 基金资助:
    国家自然科学基金青年基金(11502145)

Two Degree of Freedom PID Parameter Optimization Based on GA-PSO Fusion Algorithm

WU Yankai,ZHANG Wei,MA Yingman,LI Jiayang   

  1. School of Optical Electrical and Computer Engineering,University of Shanghai for Science and Technology, Shanghai 200093,China
  • Received:2018-10-31 Online:2019-10-15 Published:2019-10-29
  • Supported by:
    National Nature Science Foundation of China(11502145)

摘要:

在工业过程控制中,PID参数调节直接影响工业生产的质量和效率。针对PID参数调节难这一问题,文中提出了一种将遗传算法和粒子群算法相结合的智能融合算法,并将该算法应用于二自由度PID参数的优化中。该算法在遗传算法的变异算子中引入粒子群算法,充分发挥两种单一智能算法的优点,并弥补了两者的缺点。算例仿真验证结果显示,该算法可以很好的应用于PID参数优化,且在调节PID参数的过程中具有优良的性能指标数值,在目标值跟踪特性和外扰动抑制特性上具有更好的控制效果。

关键词: 遗传算法, 粒子群算法, 二自由度, 变异算子, 智能算法, 参数优化, 性能指标

Abstract:

In industrial process control systems, the tuning of PID parameters have direct influence on the quality and efficiency of production. Aiming at the difficulty of PID parameter adjustment, an intelligent fusion algorithm combined with genetic algorithm and particle swarm optimization was proposed, and the proposed algorithm was applied to tuning parameters of two-degree-of-freedom PID controller. The algorithm introduced particle swarm optimization algorithm into the mutation operator of genetic algorithm, which fully exploited the advantages of two single intelligent algorithms and made up for the shortcomings of both. The simulation results showed that the proposed algorithm could be applied to tuning PID parameters and excellent performance index values in the process of adjusting the PID parameters. Moreover, it had better control effects on target value tracking characteristics and external disturbance suppression characteristics.

Key words: genetic algorithm, particle swarm optimization, two degrees of freedom, mutation operator, intelligent algorithm, parameter optimization, performance index

中图分类号: 

  • TP273