[1] |
Chan F T S, Chung S H, Chan P L Y. Application of genetic algorithms with dominant genes in a distributed scheduling problem in flexible manufacturing systems[J]. International Journal of Production Research, 2006, 44(3):523-543.
doi: 10.1080/00207540500319229
|
[2] |
Giovanni L D, Pezzella F. An improved genetic algorithm for the distributed and flexible job-shop scheduling problem[J]. European Journal of Operational Research, 2010, 200(2):395-408.
doi: 10.1016/j.ejor.2009.01.008
|
[3] |
Chang H C, Liu T K. Optimisation of distributed manufacturing flexible job shop scheduling by using hybrid genetic algorithms[J]. Journal of Intelligent Manufacturing, 2017, 28(8):1973-1986.
doi: 10.1007/s10845-015-1084-y
|
[4] |
吴锐, 郭顺生, 李益兵, 等. 改进人工蜂群算法求解分布式柔性作业车间调度问题[J]. 控制与决策, 2019, 34(12):2527-2536.
|
|
Wu Rui, Guo Shunsheng, Li Yibing, et al. An improved artificial bee colony algorithm for distributed and flexible job-shop scheduling problem[J]. Control and Decision, 2019, 34(12):2527-2536.
|
[5] |
Lu P H, Wu M C, Tan H, et al. A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems[J]. Journal of Intelligent Manufacturing, 2018, 29(1):19-34.
doi: 10.1007/s10845-015-1083-z
|
[6] |
凌海峰. 基于参数控制的蚁群算法求解分布式柔性车间作业调度问题[C]. 合肥:第十届中国管理学年会, 2015.
|
|
Ling Haifeng. Distributed and flexible job-shop scheduling problem based on parameter adaptive ant colony algorithm[C]. Hefei:The Tenth China Management Annual Conference, 2015.
|
[7] |
李冬. 基于组合拍卖机制的分布式柔性车间优化调度的研究[D]. 沈阳:沈阳工业大学, 2015.
|
|
Li Dong. Research on distributed and flexible job-shop scheduling optimization based on combinatorial auction[D]. Shenyang:Shenyang University of Technology, 2015.
|
[8] |
Kennedy J, Eberhart R. Particle swarm optimization[C]. Perth:Proceedings of ICNN’95 International Conference on Neural Networks, 1995.
|
[9] |
杜美君, 张伟, 谢亚莲. 基于粒子群算法的PID控制器参数优化[J]. 电子科技, 2019, 32(6):7-11.
|
|
Du Meijun, Zhang Wei, Xie Yalian. Particle swarm optimization based PID controller parameter optimization[J]. Electronic Science and Technology, 2019, 32(6):7-11.
|
[10] |
周静, 崔国民, 彭富裕, 等. 基于正弦调整的粒子群算法应用于换热网络[J]. 电子科技, 2016, 29(4):37-40.
|
|
Zhou Jing, Cui Guomin, Peng Fuyu, et al. Particle swarm optimization (PSO) with sinusoidal changing inertia weight for heat exchange network synjournal[J]. Electronic Science and Technology, 2016, 29(4):37-40.
|
[11] |
Chyan G S, Ponnambalam S G. Obstacle avoidance control of redundant robots using variants of particle swarm optimization[J]. Robotics and Computer-integrated Manufacturing, 2012, 28(2):147-153.
|
[12] |
喻明让, 陈云, 张志刚. 离散粒子群优化算法求解多目标柔性作业车间调度问题[J]. 制造技术与机床, 2019(1):159-165.
|
|
Yu Mingrang, Chen Yun, Zhang Zhigang. Adiscrete version of particle swarm optimization for multi-objective flexible job-shop scheduling problems[J]. Manufacturing Technology & Machine Tool, 2019(1),159-165.
|
[13] |
Zhang L, Sun J, Guo C, et al. A multi-swarm competitive algorithm based on dynamic task allocation particle swarm optimization[J]. Arabian Journal for Science and Engineering, 2017, 43(12):8255-8274.
doi: 10.1007/s13369-017-2820-8
|
[14] |
Wang H, Wu Z, Rahnamayan S, et al. Enhancing particle swarm optimization using generalized opposition-based learning[J]. Information Sciences, 2011, 181(20):4699-4714.
doi: 10.1016/j.ins.2011.03.016
|
[15] |
Brandimarte P. Routing and scheduling in a flexible job shop by tabu search[J]. Annals of Operations Research, 1993, 41(3):157-183.
doi: 10.1007/BF02023073
|
[16] |
Pan Q K, Wang L, Qian B. A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems[J]. Computers and Operations Research, 2009, 36(8):2498-2511.
doi: 10.1016/j.cor.2008.10.008
|
[17] |
Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
doi: 10.1109/4235.996017
|
[18] |
蓝萌. 基于混合邻域搜索算法的分布式车间调度系统的研究与实现[D]. 苏州:苏州大学, 2010.
|
|
Lan Meng. Research and implementation of distributed shop floor scheduling system based on hybrid neighborhood search algorithm[D]. Suzhou:Soochow University, 2010.
|