电子科技 ›› 2021, Vol. 34 ›› Issue (10): 63-68.doi: 10.16180/j.cnki.issn1007-7820.2021.10.010

• • 上一篇    下一篇

改进粒子群算法求解分布式柔性车间调度问题

陈强,王宇嘉,林炜星,陈万芬   

  1. 上海工程技术大学 电子电气工程学院,上海 201620
  • 收稿日期:2020-06-07 出版日期:2021-10-15 发布日期:2021-10-18
  • 作者简介:陈强(1993-),男,硕士研究生。研究方向:车间调度、多目标优化算法。|王宇嘉(1979-),女,博士,副教授。研究方向:进化计算、群体智能、车间调度。
  • 基金资助:
    国家自然科学基金(61403249)

An Improve Particle Swarm Optimization Algorithm for Distribution and Flexible Job-Shop Scheduling Problem

CHEN Qiang,WANG Yujia,LIN Weixing,CHEN Wanfen   

  1. School of Electronic and Electrical Engineering,Shanghai University of Engineering Science, Shanghai 201620,China
  • Received:2020-06-07 Online:2021-10-15 Published:2021-10-18
  • Supported by:
    National Natural Science Foundation of China(61403249)

摘要:

文中提出一种改进粒子群算法来求解复杂的分布式柔性车间调度问题。针对该问题的特点,提出了一种2层粒子的编码与解码方式,使粒子群算法能够有效地解决该离散型优化问题。此外,采用改进的拥挤距离策略从众多非支配解中筛选出高质量的候选解。在迭代过程中,采用任务分配策略来平衡粒子的勘探与开采。最终在2工厂和3工厂生产模式下,通过总计20组分布式柔性车间测试算例验证了所提算法的性能。实验结果表明,该方法能够有效地解决分布式柔性车间调度问题,并可在其中的11组算例中得到较好的调度方案。

关键词: 分布式柔性车间调度问题, 拥挤距离, 任务分配, 编码, 解码, 粒子群算法, 非支配解, 离散型

Abstract:

An improved particle swarm optimization is proposed in this study for the complex distribution and flexible job-shop scheduling problem. According to the characteristics of the problem, this study proposes a two-layer particle encoding and decoding method, so that the particle swarm algorithm can effectively solve the discrete optimization problem. Additionally, an improved crowded distance is used to select high-quality candidate solutions from many non-dominated solutions. In the iterative process, the task assignment strategy is used to balance the exploration and exploitation of particles. Finally, in the production modes of 2 factories and 3 factories, the performance of the algorithm is evaluated by 20 sets of distribution and flexible job-shop scheduling test cases. Experimental results show that the proposed algorithm can effectively solve distribution and flexible job-shop scheduling problem, and can obtain a better scheduling scheme in 11 sets of examples.

Key words: distribution and flexible job-shop scheduling problem, crowded distance, task assignment strategy, encoding, decoding, particle swarm algorithm, non-dominated solutions, discrete

中图分类号: 

  • TP18