电子科技 ›› 2021, Vol. 34 ›› Issue (3): 48-53.doi: 10.16180/j.cnki.issn1007-7820.2021.03.009

• • 上一篇    下一篇

基于集成SDAE和EEG的跨被试认知工作负荷识别

郑展鹏,尹钟   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2019-12-09 出版日期:2021-03-15 发布日期:2021-03-10
  • 作者简介:郑展鹏(1995-),男,硕士研究生。研究方向:认知工作负荷识别、机器学习。|尹钟(1988-),男,博士,副教授。研究方向:生物医学信号处理、情感计算。
  • 基金资助:
    国家自然科学基金青年基金(61703277);上海青年科技英才扬帆计划(17YF1427000)

Inter-Subject Recognition of Cognitive Workload Based on Ensemble SDAE and EEG

ZHENG Zhanpeng,YIN Zhong   

  1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2019-12-09 Online:2021-03-15 Published:2021-03-10
  • Supported by:
    Youth Fund of National Natural Science Foundation of China(61703277);Shanghai Sailing Program(17YF1427000)

摘要:

基于脑电信号评估人机系统中操作员认知工作负荷状态,可以有效阻止操作员工作性能下降。文中提出一种跨被试认知工作负荷分类器E-SDAE,以适应被试间脑电特征分布的变化。该算法包括高水平个性化特征抽象和决策融合两个模块。特征滤波器利用基学习器SDAE来抽象一组被试的脑电特征。监督分类器利用超限学习机的随机性来融合经Q-statistics处理后得到的滤波脑电抽象。任务1和任务2分别取得0.635 3和0.674 7的分类率,并且显著优于一些传统的认知工作负荷评估器。时间复杂度计算结果表明,E-SDAE的计算负荷对于高维脑电特征是可接受的。

关键词: 认知工作负荷, 堆叠去噪自动编码器, 超限学习机, 人机系统, 脑电图, 集成学习

Abstract:

Assessing the operator's cognitive workload status in a human-machine system based on EEG signals can effectively prevent the operator's performance from degrading. This study proposes a novel inter-subject CW classifier, E-SDAE, to adapt the variations of the EEG feature distributions across multiple subjects. The E-SDAE includes two cascade-connected modules: high level personalized feature abstractions and decision fusion. The feature filters employ the base learner SDAE to abstract the EEG features from a group of individuals. The supervised CW classifier exploites the random characteristics of ELM to fuse the filtered EEG abstractions under the implementation of Q-statistics. The classification rate achieves 0.635 3 and 0.674 7 for Task 1 and Task 2, respectively, and are significantly better than several conventional CW estimators. The time complexity calculation results show that the computational workload of the E-SDAE is also acceptable for high-dimensional EEG features.

Key words: cognitive workload, stacked denoising autoencoder, extreme learning machine, human-machine system, EEG, ensemble learning

中图分类号: 

  • TP391