电子科技 ›› 2021, Vol. 34 ›› Issue (3): 48-53.doi: 10.16180/j.cnki.issn1007-7820.2021.03.009
郑展鹏,尹钟
收稿日期:
2019-12-09
出版日期:
2021-03-15
发布日期:
2021-03-10
作者简介:
郑展鹏(1995-),男,硕士研究生。研究方向:认知工作负荷识别、机器学习。|尹钟(1988-),男,博士,副教授。研究方向:生物医学信号处理、情感计算。
基金资助:
ZHENG Zhanpeng,YIN Zhong
Received:
2019-12-09
Online:
2021-03-15
Published:
2021-03-10
Supported by:
摘要:
基于脑电信号评估人机系统中操作员认知工作负荷状态,可以有效阻止操作员工作性能下降。文中提出一种跨被试认知工作负荷分类器E-SDAE,以适应被试间脑电特征分布的变化。该算法包括高水平个性化特征抽象和决策融合两个模块。特征滤波器利用基学习器SDAE来抽象一组被试的脑电特征。监督分类器利用超限学习机的随机性来融合经Q-statistics处理后得到的滤波脑电抽象。任务1和任务2分别取得0.635 3和0.674 7的分类率,并且显著优于一些传统的认知工作负荷评估器。时间复杂度计算结果表明,E-SDAE的计算负荷对于高维脑电特征是可接受的。
中图分类号:
郑展鹏,尹钟. 基于集成SDAE和EEG的跨被试认知工作负荷识别[J]. 电子科技, 2021, 34(3): 48-53.
ZHENG Zhanpeng,YIN Zhong. Inter-Subject Recognition of Cognitive Workload Based on Ensemble SDAE and EEG[J]. Electronic Science and Technology, 2021, 34(3): 48-53.
表1
任务1中SAE、ELM和E-SDAE的阶段平均测试分类性能"
分类器 | 被试 | 精度 | 灵敏度 | 特异度 | 查准率 | 阴性值 |
---|---|---|---|---|---|---|
A | 0.416 1 | 0.729 2 | 0.450 6 | 0.726 6 | 0.454 3 | |
B | 0.441 5 | 0.744 4 | 0.476 1 | 0.739 7 | 0.482 4 | |
C | 0.400 7 | 0.730 6 | 0.414 4 | 0.714 1 | 0.434 0 | |
D | 0.380 2 | 0.701 4 | 0.418 3 | 0.707 0 | 0.412 0 | |
SAE | E | 0.395 4 | 0.725 6 | 0.445 6 | 0.723 4 | 0.448 8 |
F | 0.415 9 | 0.719 4 | 0.385 0 | 0.700 8 | 0.406 1 | |
G | 0.432 0 | 0.764 7 | 0.400 0 | 0.718 3 | 0.459 0 | |
H | 0.351 1 | 0.706 9 | 0.378 9 | 0.694 1 | 0.395 9 | |
Mean | 0.404 1 | 0.727 8 | 0.421 1 | 0.715 5 | 0.436 6 | |
A | 0.453 0 | 0.703 9 | 0.553 3 | 0.759 3 | 0.482 7 | |
B | 0.467 6 | 0.759 4 | 0.681 1 | 0.826 2 | 0.587 0 | |
C | 0.427 8 | 0.638 6 | 0.554 4 | 0.741 2 | 0.434 5 | |
D | 0.352 8 | 0.605 0 | 0.445 6 | 0.684 1 | 0.364 4 | |
ELM | E | 0.519 4 | 0.767 8 | 0.752 2 | 0.861 9 | 0.616 8 |
F | 0.415 7 | 0.672 2 | 0.551 7 | 0.750 1 | 0.456 6 | |
G | 0.425 6 | 0.712 5 | 0.624 4 | 0.793 0 | 0.518 0 | |
H | 0.426 1 | 0.770 6 | 0.612 2 | 0.800 5 | 0.566 8 | |
Mean | 0.436 0 | 0.703 8 | 0.596 9 | 0.777 0 | 0.5033 | |
A | 0.631 7 | 0.785 3 | 0.741 7 | 0.861 7 | 0.644 4 | |
B | 0.694 4 | 0.853 1 | 0.780 0 | 0.885 5 | 0.727 9 | |
C | 0.629 3 | 0.845 3 | 0.402 2 | 0.736 9 | 0.593 5 | |
D | 0.529 1 | 0.909 4 | 0.407 8 | 0.753 0 | 0.719 9 | |
E-SDAE | E | 0.754 6 | 0.820 6 | 0.793 9 | 0.896 1 | 0.711 9 |
F | 0.552 0 | 0.770 8 | 0.487 8 | 0.750 1 | 0.519 6 | |
G | 0.626 1 | 0.710 0 | 0.588 3 | 0.787 7 | 0.527 4 | |
H | 0.665 4 | 0.891 7 | 0.760 6 | 0.881 4 | 0.806 5 | |
Mean | 0.635 3 | 0.823 3 | 0.620 3 | 0.819 0 | 0.656 4 |
表2
任务2中SAE,ELM和E-SDAE的阶段平均测试分类性能"
分类器 | 被试 | 精度 | 灵敏度 | 特异度 | 查准率 | 阴性值 |
---|---|---|---|---|---|---|
I | 0.455 9 | 0.631 0 | 0.619 8 | 0.711 6 | 0.534 1 | |
J | 0.395 9 | 0.570 1 | 0.511 2 | 0.636 6 | 0.442 4 | |
K | 0.459 7 | 0.685 1 | 0.676 7 | 0.760 7 | 0.588 9 | |
SAE | L | 0.499 7 | 0.658 0 | 0.762 1 | 0.806 0 | 0.597 6 |
M | 0.397 2 | 0.612 1 | 0.594 0 | 0.693 4 | 0.505 1 | |
N | 0.414 8 | 0.546 6 | 0.597 4 | 0.670 3 | 0.468 5 | |
Mean | 0.437 2 | 0.617 1 | 0.626 9 | 0.713 1 | 0.522 8 | |
I | 0.441 0 | 0.594 8 | 0.685 3 | 0.739 3 | 0.530 0 | |
J | 0.423 8 | 0.424 7 | 0.662 9 | 0.635 0 | 0.443 3 | |
K | 0.509 3 | 0.671 3 | 0.757 8 | 0.806 9 | 0.605 1 | |
ELM | L | 0.505 2 | 0.647 1 | 0.762 9 | 0.802 1 | 0.592 3 |
M | 0.475 9 | 0.525 3 | 0.694 0 | 0.720 0 | 0.493 9 | |
N | 0.397 6 | 0.496 6 | 0.600 0 | 0.651 1 | 0.442 4 | |
Mean | 0.458 8 | 0.560 0 | 0.693 8 | 0.725 7 | 0.517 8 | |
I | 0.643 1 | 0.624 7 | 0.798 3 | 0.836 8 | 0.605 2 | |
J | 0.558 6 | 0.635 1 | 0.741 4 | 0.784 2 | 0.642 1 | |
K | 0.801 7 | 0.868 4 | 0.922 4 | 0.947 3 | 0.828 0 | |
E-SDAE | L | 0.782 8 | 0.880 5 | 0.889 7 | 0.923 1 | 0.832 0 |
M | 0.659 0 | 0.944 8 | 0.765 5 | 0.858 2 | 0.904 8 | |
N | 0.603 1 | 0.687 9 | 0.687 9 | 0.813 1 | 0.796 8 | |
Mean | 0.674 7 | 0.807 1 | 0.800 9 | 0.860 4 | 0.768 2 |
表3
模型的平均测试精度"
模型 | 任务1 | 任务2 | ||
---|---|---|---|---|
均值 | 标准偏差 | 均值 | 标准偏差 | |
ELM | 0.436 0 | 0 | 0.458 8 | 0 |
LSSVM | 0.442 9 | 0 | 0.476 3 | 0 |
KNN | 0.397 7 | 2.593 5×10-16 | 0.443 4 | 2.009 3×10-16 |
ANN | 0.447 7 | 2.102 8×10-16 | 0.485 9 | 3.457 9×10-16 |
LR | 0.432 4 | 2.628 5×10-16 | 0.427 8 | 2.850 5×10-16 |
NB | 0.396 6 | 2.278 0×10-16 | 0.368 2 | 1.635 5×10-16 |
SAE | 0.404 1 | 0 | 0.437 2 | 0 |
E-SDAE | 0.635 3 | 0.072 6 | 0.674 7 | 0.097 8 |
表5
已有文献中认知工作负荷识别结果对比"
文献 | 特征 | 分类器 | 人机任务 | 分类器类型 | 精度 |
---|---|---|---|---|---|
[ | EEG | 三分类, TLDA | 睡眠 | 独立被试 | 0.821 6 |
Task 1: 0.590 0 | |||||
[ | EEG | 二分类, ANN | 阅读 | 特定被试 | Task 2: 0.600 0 |
Task 3: 0.590 0 | |||||
[ | EEG | 二分类, KNN | 驾驶 | 独立被试 | 0.860 0 |
[ | fNIR | 二分类, SVM AdaBoost DBN CNN | Stroop任务 | 混合被试 | 模型1: 0.647 4 模型2: 0.711 3 模型3: 0.842 6 模型4: 0.727 7 |
三分类 | 脑力负荷: 0.683 8 | ||||
[ | EEG | 五分类 | AutoCAMS | 跨被试 | 精神疲劳: 0.769 0 |
SDBN | 双负荷: 0.544 4 | ||||
本文 | EEG | 三分类 E-SDAE | AutoCAMS | 跨被试 | Task 1: 0.635 3 Task 2: 0.674 7 |
[1] | Paas F, Tuovinen J E. Cognitive load measurement as means to advance cognitive load theory[J]. Educational Psychologist, 2003,38(1):63-71. |
[2] | 陈善广, 姜国华, 王春慧, 等. 航天人因工程研究进展[J]. 载人航天, 2015,21(2):95-105. |
Chen Guangshan, Jiang Guohua, Wang Chunhui, et al. Advancement in space human factors engineering[J]. Manned Spaceflight, 2015,21(2):95-105. | |
[3] | 莫秋云, 李荣敬. 山区公路条件下驾驶员生理特性研究[J]. 电子科技, 2013,26(3):83-89. |
Mo Qiuyun, Li Rongjing. Driver’s physiological characteristics under mountain road conditions[J]. Electronic Science and Technology, 2013,26(3):83-89. | |
[4] | 赵云飞, 张立国, 张勤, 等. BP神经网络在AP1000核电站事故诊断应用中的初步研究[J]. 原子能科学技术, 2014,48(S1):480-484. |
Zhao Yunfei, Zhang Liguo, Zhang Qin, et al. Preliminary study on application of BP neural network in AP1000 nuclear power plant accident diagnosis[J]. Atomic Energy Science and Technology, 2014,48(S1):480-484. | |
[5] |
Colligan L, Potts H W, Finn C T, et al. Cognitive workload changes for nurses transitioning from a legacy system with paper documentation to a commercial electronic health record[J]. International Journal of Medical Informatics, 2015,84(7):469-476.
pmid: 25868807 |
[6] | 刘辉, 杜玉晓, 彭杰, 等. 脑-机接口技术发展[J]. 电子科技, 2011,24(5):116-119. |
Liu Hui, Du Yuxiao, Peng Jie, et al. A review of brain-computer interface development[J]. Electronic Science and Technology, 2011,24(5):116-119. | |
[7] | Antonenko P, Paas F, Grabner R, et al. Using electroencephalography to measure cognitive load[J]. Educational Psychology Review, 2010,22(4):425-438. |
[8] |
Gevins A, Mc Evoy L K, Smith M E, et al. Long-term and within-day variability of working memory performance and EEG in individuals[J]. Clinical Neurophysiology, 2012,123(7):1291-1299.
pmid: 22154302 |
[9] |
Model D, Zibulevsky M. Learning subject-specific spatial and temporal filters for single-trial EEG classification[J]. Neuro Image, 2006,32(4):1631-1641.
pmid: 16828316 |
[10] |
Yin Z, Zhang J. Operator functional state classification using least square support vector machine based recursive feature elimination technique[J]. Computer Methods and Programs in Biomedicine, 2014,113(1):101-115.
doi: 10.1016/j.cmpb.2013.09.007 pmid: 24138846 |
[11] | Yin Z, Zhang J. Cross-session classification of mental workload levels using EEG and an adaptive deep learning model[J]. Biomedical Signal Processing and Control, 2017,33(1):30-47. |
[12] | Sauer J, Nickel P, Wastell D. Designing automation for complex work environments under different levels of stress[J]. Applied Ergonomics, 2013,44(1):119-127. |
[13] | Zhang X Z, Zheng W L, Lu B L. EEG-based sleep quality evaluation with deep transfer learning[C]. Shanghai:International Conference on Neural Information Processing, 2017. |
[14] |
Baldwin C, Penaranda B. Adaptive training using an artificial neural network and EEG metrics for within and cross-task workload classification[J]. Neuro Image, 2012,59(1):48-56.
pmid: 21835243 |
[15] |
Fan J, Wade J W, Key A P, et al. EEG-based affect and workload recognition in a virtual driving environment for ASD intervention[J]. IEEE Transactions on Biomedical Engineering, 2018,65(1):43-51.
pmid: 28422647 |
[16] | Ho T K K, Gwak J, Park C M, et al. Discrimination of mental workload levels from multi-channel fNIR Susing deep leaning-based approaches[J]. IEEE Access, 2019,7(1):24392-24403. |
[17] | Yin Z, Zhang J. Cross-subject recognition of operator functional states via EEG and switching deep belief networks with adaptive weights[J]. Neurocomputing, 2017,260(1):349-366. |
[1] | 伍伟嘉,杨俭,袁天辰,邵志慧. 基于支持向量机的轨道结构病害识别研究[J]. 电子科技, 2022, 35(2): 27-33. |
[2] | 李辉,王一丞. 基于CNNCIFG-Attention模型的文本情感分类[J]. 电子科技, 2022, 35(2): 46-51. |
[3] | 邵志慧,杨俭,袁天辰,伍伟嘉. 基于排列熵和支持向量机的轨枕病害诊断[J]. 电子科技, 2022, 35(2): 52-58. |
[4] | 宗圣康,程建鹏,张西良. 基于光斑位置的起重机轨道高度差自动检测方法[J]. 电子科技, 2022, 35(1): 21-28. |
[5] | 方鑫,吴尧辉,吴昊珍. 基于Fluent的电机温度场计算[J]. 电子科技, 2021, 34(12): 30-35. |
[6] | 彭荣杰,彭亚雄,陆安江. 基于改进PCA+SVM的人脸识别系统[J]. 电子科技, 2021, 34(12): 56-61. |
[7] | 张灿,陈玮,尹钟. 基于弱监督宫颈细胞图像的语义分割方法[J]. 电子科技, 2021, 34(12): 68-74. |
[8] | 张莹,刘子龙,万伟. 基于Faster R-CNN的无人机车辆目标检测[J]. 电子科技, 2021, 34(11): 11-20. |
[9] | 徐洋洋,伞红军,陈久朋,谢飞亚,魏顺祥,王汪林,刘亮,陈佳. FL-DLight3-4000激光器激光熔覆过程温度场数值模拟分析[J]. 电子科技, 2021, 34(11): 1-10. |
[10] | 孙帅,刘子龙,万伟. 基于正则化模型的RLS算法改进[J]. 电子科技, 2021, 34(11): 26-30. |
[11] | 王新掌,郭强,许孝卓. 笼型转子端环断裂引发电机各场量变化情况的分析[J]. 电子科技, 2021, 34(10): 18-26. |
[12] | 陈胜利,王新掌,许孝卓. 永磁同步电机失磁故障电磁仿真分析[J]. 电子科技, 2021, 34(10): 32-37. |
[13] | 赵崇,迟蒙蒙,储聪,张鹏. 导盲犬行走机构运动仿真及其视觉识别算法研究[J]. 电子科技, 2021, 34(9): 66-72. |
[14] | 刘轩,付东翔. 基于人脸姿态估计的多角度虚拟眼镜试戴技术[J]. 电子科技, 2021, 34(9): 58-65. |
[15] | 韩世凡,付东翔. 基于NURBS的光学镜片重构算法研究[J]. 电子科技, 2021, 34(9): 24-29. |
|