[1] |
Dragoni M. A three-phase approach for exploiting opinion mining in computational advertising[J]. IEEE Intelligent Systems, 2017, 32(3):21-27.
doi: 10.1109/MIS.2017.46
|
[2] |
房乐楠, 何腾鹏, 刘宇红. 一种改进型PSO算法在SVM参数寻优中的应用[J]. 电子科技, 2018, 31(6):17-19.
|
|
Fang Lenan, He Tengpeng, Liu Yuhong. Application of an improved PSO algorithm in SVM parameter optimization[J]. Electronic Science and Technology, 2018, 31(6):17-19.
|
[3] |
Bilal M, Israr H, Shahid M, et al. Sentiment classification of Roman-Urdu opinions using Nave Bayesian, decision tree and KNN classification techniques[J]. Journal of King Saud University-Computer and Information Sciences, 2016, 28(3):330-344.
doi: 10.1016/j.jksuci.2015.11.003
|
[4] |
Huang M L, Qian Q, Zhu X Y. Encoding syntactic knowledge in neural networks for sentiment classification[J]. ACM Transactions on Information Systems, 2017, 35(3):1-27.
|
[5] |
Poria S, Peng H Y, Hussain A, et al. Ensemble application of convolutional neural networks and multiple kernel learning for multimodal sentiment analysis[J]. Neurocomputing, 2017, 26(1):217-230.
|
[6] |
Stojanovski D, Strezoski G, Madjarov G, et al. Deep neural network architecture for sentiment analysis and emotion identification of Twitter messages[J]. Multimedia Tools and Applications, 2018, 77(24):32213-32242.
doi: 10.1007/s11042-018-6168-1
|
[7] |
梁斌, 刘全, 徐进, 等. 基于多注意力卷积神经网络的特定目标情感分析[J]. 计算机研究与发展, 2017, 54(8):1724-1735.
|
|
Liang Bin, Liu Quan, Xu Jin, et al. Aspect-based sentiment analysis based on multi-attention CNN[J]. Journal of Computer Research and Development, 2017, 54(8):1724-1735.
|
[8] |
Rehman A U, Malik A K, Raza B, et al. A hybrid CNN-LSTM model for improving accuracy of movie reviews sentiment analysis[J]. Multimedia Tools and Applications, 2019, 78(18):26597-26613.
doi: 10.1007/s11042-019-07788-7
|
[9] |
Shuang K, Ren X T, Yang Q Q, et al. AELA-DLSTMs:attention-enabled and location-aware double LSTMs for aspect-level sentiment classification[J]. Neurocomputing, 2019, 33(4):25-34.
|
[10] |
王伟, 王洪伟, 孟园. 协同过滤推荐算法研究:考虑在线评论情感倾向[J]. 系统工程理论与实践, 2014, 34(12):3238-3249.
|
|
Wang Wei, Wang Hongwei, Meng Yuan. The collaborative filtering recommendation based on sentiment analysis of online reviews[J]. Systems Engineering-Theory & Practice, 2014, 34(12):3238-3249.
|
[11] |
张平平. 卷积CIFG模型在影评情感分析中的应用[D]. 上海:上海师范大学, 2019.
|
|
Zhang Pingping. Application of convolutional CIFG model in sentiment analysis of film review[D]. Shanghai:Shanghai Normal University, 2019.
|
[12] |
Liu M F, Hu H J, Li L J, et al. Chinese image caption generation via visual attention and topic modeling[J]. IEEE Transactions on Cybernetics, 2020, 9(9):1-11.
|
[13] |
Choi H, Cho K, Bengio Y. Fine-grained attention mechanism for neural machine translation[J]. Neurocomputing, 2018, 284(5):171-176.
doi: 10.1016/j.neucom.2018.01.007
|
[14] |
Zhou C T, Sun C L, Liu Z Y, et al. A C-LSTM neural network for text classification[J]. Computer Science, 2015, 1(4):39-44.
|
[15] |
Li B Y, Zhou K M, Gao W, et al. Attention-based LSTM-CNNs for uncertainty identification on Chinese social media texts[C]. Shenzhen:Proceedings of the International Conference on Security,Pattern Analysis,and Cybernetics, 2017.
|
[16] |
Zhang Y S, Jiang Y R, Tong Y X. Study of sentiment classification for Chinese microblog based on recurrent neural network[J]. Chinese Journal of Electronics, 2016, 25(4):601-607.
doi: 10.1049/cje.v25.4
|
[17] |
Dawn E H, Lakhmi C J. Innovations in machine learning[M]. Heidelberg:Springer, 2006.
|
[18] |
Church W K. Word2vec[J]. Natural Language Engineering, 2017, 23(1):155-162.
doi: 10.1017/S1351324916000334
|