[1] |
张亮军, 承垠林, 马梦楠, 等. 基于Dense U-Net方法的眼底彩色照片图像血管分割研究[J]. 生物医学工程研究, 2019,38(4):397-402.
|
|
Zhang Liangjun, Cheng Yinlin, Ma Mengnan, et al. Research oncolor fundus image blood vessel segmentation based on Dense U-Net[J]. Journal of Biomedical Engineering Research, 2019,38(4):397-402.
|
[2] |
梁礼明, 黄朝林, 石霏, 等. 融合形状先验的水平集眼底图像血管分割[J]. 计算机学报, 2018,41(7):1678-1692.
|
|
Liang Liming, Huang Chaolin, Shi Fei, et al. Fusion of shape priori level set for fundus image vascular segmentation[J]. Journal of Computer Science, 2018,41(7):1678-1692.
|
[3] |
Li Q, You J, Zhang D. Vessel segmentation and width estimation in retinal images ussing multi- scale production of matched filter responses[J]. Expert Systems with Appl- ications, 2012,39(9):7600-7610.
|
[4] |
Fraz M M, Barman S A, Remagnino P, et al. An approach to localize the retinal blood vessels using bit planes and centerline detection[J]. Computer Methods and Programs in Biomedicine, 2012,108(2):600-616.
|
[5] |
贝琛圆, 于海滨, 潘勉, 等. 基于改进U-Net网络的腺体细胞图像分割算法[J]. 电子科技, 2019,32(11):18-22.
|
|
Bei Chenyuan, Yu Haibin, Pan Mian, et al. Gland cell image segmentation algorithm based on improved U-Net network[J]. Electronic Science and Technology, 2019,32(11):18-22.
|
[6] |
Orlando J I, Prokofyeva E, Blaschko M B. A discri-minatively trained fully connected conditional rand field model for blood vessel Segmentation in fundus images[J]. IEEE Trans on Biomedical Engineering, 2016,64(1):16-27.
|
[7] |
Staal J, Abramoff M D, Niemeijer M, et al. Ridgebased vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 2004,23(4):501-509.
|
[8] |
朱承璋, 邹北骥, 向遥, 等. 彩色眼底图像视网膜血管分割方法研究进展[J]. 计算机辅助设计与图形学学报, 2015,27(11):2046-2057.
|
|
Zhu Chengzhang, Zou Beiji, Xiang Yao, et al. A survey of retinal vessel segmentation in fundus images[J]. Journal of Computer-Aided Design & Computer Graphics, 2015,27(11):2046-2057.
|
[9] |
储清翠, 王华彬, 陶亮. 图像的局部自适应 Gamma校正[J]. 计算机工程与应用, 2015,51(7):189-193.
|
|
Chu Qingcui, Wang Huabin, Tao Liang. Local adaptive Gamma correction of images[J]. Computer Engineering and Applications, 2015,51(7):189-193.
|
[10] |
张利欣, 车世界, 徐正光, 等. 基于残差网络的高温合金微观组织图像分割方法[J]. 科学技术与工程, 2020,20(1):246-251.
|
|
Zhang Lixin, Che Shijie, Xu Zhengguang, et al. Microstructure image segmentation of superalloy based on resnunet[J]. Science Technology and Engineering , 2020,20(1):246-251.
|
[11] |
梁礼明, 盛校棋, 郭凯, 等. 基于改进的U-Net眼底视网膜血管分割[J]. 计算机应用研究, 2020,37(4):1247-1251.
|
|
Liang Liming, Sheng Xiaoqi, Guo Kai, et al. Improved U-Net fundus retinal vessels segmentation[J]. Application Research of Computers, 2020,37(4):1247-1251.
|
[12] |
Roychowdhury S, Koozekanani D D, Parhi K K. Blood vessel segmentation of fundus images by major vessel extraction and subimage classification[J]. IEEE Journal of Biomed Health Information, 2017,19(3):1118-1128
|
[13] |
王婷, 李航, 胡智. 一种VGG Net的图像风格迁移算法设计与实现[J]. 计算机应用与软件, 2019,36(11):224-228.
|
|
Wang Ting, Li Hang, Hu Zhi. Design and implementatio n of image style migration algorithm based on VGG Net[J]. Computer Applications and Softwar, 2019,36(11):224-228.
|
[14] |
Cheng E, Du L, Wu Y, et al. Discriminative vessel segmentation in retinal images by fusing contextaware hybrid features[J]. Machine Vision an Applications, 2014,25(7):1779-1792.
|
[15] |
Li Q L, Feng B, Xie L P, et al. A cross-modality learning approach for vessel segmentation in retinal images[J]. IEEE Transactions on Medical Imaging, 2016,35(1):109-118.
|
[16] |
Strisciuglio N, Azzopardi G, Vento M, et al. Supervised vessel delineation in retinal fundus images with the automatic selection of B-COSFIRE filters[J]. Machine Vision & Applications, 2016,27(8):1137-1149.
|
[17] |
Liskowski P, Krzysztof K. Segmenting retinal blood vesselswith deep neural networks[J]. IEEE Transactions on Medical Imaging, 2016,35(11):2369-2380.
|
[18] |
吴晨玥, 易本顺, 章云港, 等. 基于改进卷积神经网络的视网膜血管图像分割[J]. 光学学报, 2018,38(11):133-139.
|
|
Wu Chenyu, Yi Benshun, Zhang Yungang, et al. Retinal vascular image segmentation based on improved convolution neural network[J]. Journal of Optics, 2018,38(11):133-139.
|
[19] |
Gao X R, Cai Y H, Qiu C Y, et al. Retinal blood vessel segmentation based on the Gaussian matched filter and U-net[C]. Shanghai:The Tenth International Congress on Image and Signal Processing,Biomedical Engineering and Informatics, 2017.
|