[1] |
史存存. 基于深度学习的珊瑚礁鱼类检测与识别研究[D]. 北京:北京交通大学, 2019.
|
|
Shi Cuncun. Deep learning-based coral reef fish detection and identification research[D]. Beijing:Beijing Jiaotong University, 2019.
|
[2] |
Hsiao Y H, Chen C C, Lin S I , et al. Real-world underwater fish recognition and identification, using sparse representation[J]. Ecological Informatics, 2014,23(7):13-21.
|
[3] |
Nishida Y, Ura T, Hamatsu T, et al. Fish recognition method using vector quantization histogram for investigation of fishery resources[C]. Genova:IEEE Oceans, 2015.
|
[4] |
Evan S, Long J, Trevor D. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(4):640-651.
doi: 10.1109/TPAMI.2016.2572683
pmid: 27244717
|
[5] |
李荣瑞, 施霖. 基于深度学习的盲文自动识别系统[J]. 电子科技, 2018,31(9):45-49.
|
|
Li Rongrui, Shi Lin. Braille automatic recognition system based on deep learning[J]. Electronic Science and Technology, 2018,31(9):45-49.
|
[6] |
梁建胜, 温贺平. 基于深度学习的视频关键帧提取与视频检索[J]. 控制工程, 2019,26(5):965-970.
|
|
Liang Jiansheng, Wen Heping. Video key frame extraction and video retrieval based on deep learning[J]. Control Engineering, 2019,26(5):965-970.
|
[7] |
Ma Y, Zhang P, Tang Y. Research on fish image classification based on transfer learning and convolutional neural network model[C]. Huangshan:The Fourteenth International Conference on Natural Computation,Fuzzy Systems and Knowledge Discovery, 2018.
|
[8] |
成晋军, 张晓娟. 基于形态学正则化算子的图像重构算法[J]. 控制工程, 2017,24(11):2218-2224.
|
|
Cheng Jinjun, Zhang Xiaojuan. Image reconstruction algorithm based on morphological regularization operator[J]. Control Engineering, 2017,24(11):2218-2224.
|
[9] |
Wang P Y, Fei S, Zhao Z C , et al. Deep class-skewed learning for face recognition[J]. Neurocomputing, 2019,36(4):355-363.
|
[10] |
王晓红, 刘芳, 麻祥才. 基于深度残差学习的彩色图像去噪研究[J]. 包装工程, 2019,40(17):235-242.
|
|
Wang Xiaohong, Liu Fang, Ma Xiangcai. Research on color image denoising based on deep residual learning[J]. Packaging Engineering, 2019,40(17):235-242.
|
[11] |
陈英义, 龚川洋, 刘烨琦 , 等. 基于FTVGG16卷积神经网络的鱼类识别方法[J]. 农业机械学报, 2019,50(5):223-231.
|
|
Chen Yingyi, Gong Chuanyang, Liu Yeqi , et al. Fish identification method based on FTVGG16 convolutional neural network[J]. Acta Agriculturae Mechanica Sinica, 2019,50(5):223-231.
|
[12] |
Hafiz T R, Ikram U L, Saliha Z , et al. Visual features based automated identification of fish species using deep convolutional neural networks[J]. Computers and Electronics in Agriculture, 2019,11(2):154-167.
|
[13] |
Lou C, Li X. Unsupervised fault detection based on laplacian score and TEDA[C]. Enshi:The Seventh Data Driven Control and Learning Systems Conference, 2018.
|
[14] |
龙满生, 欧阳春娟, 刘欢 , 等. 基于卷积神经网络与迁移学习的油茶病害图像识别[J]. 农业工程学报, 2018,34(18):194-201.
|
|
Long Mansheng, Ouyang Chunjuan, Liu Huan , et al. Image identification of oil tea disease based on convolutional neural network and migration learning[J]. Acta Agric Engineeringsi, 2018,34(18):194-201.
|
[15] |
秦莹华, 李菲菲, 陈虬. 基于迁移学习的多标签图像标注[J]. 电子科技, 2018,31(8):21-24.
|
|
Qin Yinghua, Li Feifei, Chen Qiu. Multi-label image annotation based on transfer learning[J]. Electronic Science and Technology, 2018,31(8):21-24.
|
[16] |
Sun B, Xu F, He J. Clustering-weighted SIFT-based classification method via sparse representation[J]. Journal of Electronic Imaging, 2014,23(4):43-57.
|
[17] |
许言路, 卢悦, 朱冰 , 等. 基于FFT优化ResNet模型的短期负荷预测方法[J]. 控制工程, 2019,26(6):1085-1090.
|
|
Xu Yanlu, Lu Yue, Zhu Bing , et al. Short-term load forecasting method based on FFT optimized ResNet model[J]. Control Engineering, 2019,26(6):1085-1090.
|