电子科技 ›› 2021, Vol. 34 ›› Issue (3): 36-42.doi: 10.16180/j.cnki.issn1007-7820.2021.03.007

• • 上一篇    下一篇

基于深度学习与显著性的数字图像构图优化

邵杭,王永雄,秦宇龙   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2019-12-12 出版日期:2021-03-15 发布日期:2021-03-10
  • 作者简介:邵杭(1993-),男,硕士研究生。研究方向:模式识别、数字图像处理与计算机视觉。|王永雄(1970-),男,博士,教授,博士生导师。研究方向:计算机视觉与智能机器人。|秦宇龙(1994-),男,硕士研究生。研究方向:深度学习与人体行为识别。
  • 基金资助:
    国家自然科学基金(61673276);国家自然科学基金(61703277)

Digital Image Composition Optimization Based on Salient Feature Algorithm

SHAO Hang,WANG Yongxiong,QIN Yulong   

  1. School of Optical Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2019-12-12 Online:2021-03-15 Published:2021-03-10
  • Supported by:
    National Natural Science Foundation of China(61673276);National Natural Science Foundation of China(61703277)

摘要:

构图是决定数字图像美学质量的重要因素,而现有的计算机优化算法在这一领域还存在整体性、视觉平衡感不足等问题。针对这一问题,文中提出了一种基于深度学习模型的构图优化算法,将显著特征与改善视觉平衡相结合,实现了更符合图像美学的构图优化。文中卷积网络以VGG-16为主干,加权两项损失函数并以图像像素进行平均,可在训练后实现端到端的全分辨率显著性回归。定性对比和定量验证的实验结果表明,相较于传统优化方法,文中算法在改善视觉平衡方面具有明显优势,处理后的图像画面平衡感得到显著提升,更符合美学评价原则和人的视觉感受。

关键词: 图像美学, 构图优化, 深度学习, 显著性, 端到端模型, 视觉平衡

Abstract:

Image composition is an important factor in the digital image aesthetic quality. Existing computer optimization algorithms have a number of shortcomings, such as visual imbalance and poor integrity. Therefore, this paper proposes a novel composition optimization algorithm based on the deep learning model. This algorithm combines salient features with improved visual balance to achieve composition optimization that is more in line with image aesthetics. The deep convolutional neural network is based on VGG-16, weighting two loss functions and averaging image pixel values. After training, the network could achieve end-to-end saliency regression without any pre-processing or post-processing. Comparative experiments and quantitative verification results demonstrate that compared with the current traditional optimization approaches, the proposed algorithm has obvious advantages in improving visual balance. The processed image has a significantly improved sense of balance, which is more in line with the principles of aesthetic evaluation and visual perception.

Key words: image aesthetic, composition optimization, deep learning, salient feature, end-to-end model, visual balance

中图分类号: 

  • TP391