[1] |
Neumann L, Sbert M, Gooch B. Defining computational aesthetics[J]. Computational Aesthetics in Graphics, Visualization and Imaging, 2005(5):13-18.
|
[2] |
王伟凝, 蚁静缄, 贺前华. 可计算图像美学研究进展[J]. 中国图象图形学学报, 2012,17(8):893-901.
|
|
Wang Weining, Yi Jingjian, He Qianhua. Review for computational image aesthetics[J]. Journal of Image and Graphics, 2012,17(8):893-901.
|
[3] |
Deng Y, Loy C, Tang X. Image aesthetic assessment: An experimental survey[J]. IEEE Signal Processing Magazine, 2017,34(4):80-106.
|
[4] |
胡少聪. 基于深度学习的人脸识别方法研究[J]. 电子科技, 2019,32(6):82-86.
|
|
Hu Shaocong. Research on face recognition based on deep learning[J]. Electronic Science and Technology, 2019,32(6):82-86.
|
[5] |
Lu P, Zhang H, Peng X. Aesthetic guided deep regression network for image cropping[J]. Signal Processing Image Communication, 2019,77(6):1-10.
|
[6] |
Kong S, Shen X, Lin Z, et al. Photo aesthetics ranking network with attributes and content adaptation[C]. Amsterdam:Proceedings of European Conference on Computer Vision, 2016.
|
[7] |
Wang W, Shen J. Deep cropping via attention box prediction and aesthetics assessment[C]. Venice: Proceedings of IEEE International Conference on Computer Vision, 2017.
|
[8] |
Zhu J, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. Venice:Proceedings of IEEE International Conference on Computer Vision, 2017.
|
[9] |
Levada A. Closed-form Bayesian image denoising: Improving the adaptive Wiener filter through pairwise Gaussian-Markov random fields[J]. Communication in Statistics Simulation and Computation, 2019(7):1-25.
|
[10] |
Ignatov A, Kobyshev N, Timofte R, et al. DSLR-quality photos on mobile devices with deep convolutional networks[C]. Venice:Proceedings of IEEE International Conference on Computer Vision, 2017.
|
[11] |
Yao L, Suryanarayan P, Qiao M, et al. Oscar:On-site composition and aesthetics feedback through exemplars for photographers[J]. International Journal of Computer Vision, 2012,96(9):353-383.
doi: 10.1007/s11263-011-0478-3
|
[12] |
顾婷婷, 郭延文, 殷昆燕. 结合浅景深与构图的图像质量评价[J]. 中国图象图形学学报, 2013,18(5):574-582.
doi: 10.11834/jig.20130512
|
|
Gu Tingting, Guo Yanwen, Yin Kunyan. Image quality assessment combining low DoF and composition[J]. Journal of Image and Graphics, 2013,18(5):574-582.
doi: 10.11834/jig.20130512
|
[13] |
袁小平, 王岗, 王晔枫, 等. 基于改进卷积神经网络的交通标志识别方法[J]. 电子科技, 2019,32(11):28-32.
|
|
Yuan Xiaoping, Wang Gang, Wang Yefeng, et al. Traffic sign recognition method based on improved convolutional neural network[J]. Electronic Science and Technology, 2019,32(11):28-32.
|
[14] |
凌艳, 陈莹. 多尺度上下文信息增强的显著目标检测全卷积网络[J]. 计算机辅助设计与图形学学报, 2019,31(11):2007-2016.
|
|
Ling Yan, Chen Ying. Salient object detection with multiscale context enhanced fully convolutional network[J]. Journal of Computer-Aided Design & Computer Graphics, 2019,31(11):2007-2016.
|
[15] |
Bhattacharya S, Sukthankar R, Shah M. A framework for photo quality assessment and enhancement based on visual aesthetics[C]. Firenze:Proceedings of ACM International Conference on Multimedia, 2010.
|
[16] |
Jin Y, Wu Q, Liu L. Aesthetic photo composition by optimal crop-and-warp[J]. Computers and Graphics, 2012,36(8):955-965.
doi: 10.1016/j.cag.2012.07.007
|
[17] |
Guo Y, Liu M, Gu T, et al. Improving photo composition elegantly:Considering image similarity during composition optimization[J]. Computer Graphics Forum, 2012,31(2):193-202.
|
[18] |
Zhang F, Wang M. Aesthetic image enhancement by dependence-aware object recomposition[J]. IEEE Transactions on Multimedia, 2013,15(7):1480-1490.
doi: 10.1109/TMM.2013.2268051
|
[19] |
王伟凝, 刘剑聪, 徐向民, 等. 基于构图规则的图像美学优化[J]. 华南理工大学学报(自然科学版), 2015(5):51-58.
|
|
Wang Weining, Liu Jiancong, Xu Xiangmin, et al. Aesthetic enhancement of images based on photography composition guidelines[J]. Journal of South China University of Technology (Natural Science Edition), 2015(5):51-58.
|
[20] |
熊杨超. 图像美学评价及美学优化研究[D]. 广州:华南理工大学, 2015.
|
|
Xiong Yangchao. Research on image aesthetic assessment and optimizing[D]. Guangzhou: South China University of Technology, 2015.
|
[21] |
Chen J, Bai G, Liang S, et al. Automatic image cropping: A computational complexity study[C]. Las Vegas: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[22] |
Chen Y, Huang T, Chang K, et al. Quantitative analysis of automatic image cropping algorithms: A dataset and comparative study[C]. Santa Rosa:Proceedings of IEEE Winter Conference on Applications of Computer Vision, 2017.
|
[23] |
Wang W, Shen J, Ling H. A deep network solution for attention and aesthetics aware photo cropping[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019,41(9):1531-1544.
doi: 10.1109/TPAMI.34
|
[24] |
何援军. 透视和透视投影变换—论图形变换和投影的若干问题之三[J]. 计算机辅助设计与图形学学报, 2005,17(4):735-739.
|
|
He Yuanjun. Perspective and its projection transformation[J]. Journal of Computer Aided Design and Computer Graphics, 2005,17(4):735-739.
|
[25] |
Liu T, Sun J, Zheng N, et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011,33(2):353-367.
pmid: 21193811
|
[26] |
Ke Y, Tang X, Jing F. The design of high-level features for photo quality assessment[C]. New York:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2006.
|
[27] |
Luo W, Wang X, Tang X. Content-based photo quality assessment[J]. IEEE Transactions on Multimedia, 2013(5):1930-1943.
|
[28] |
Murray N, Marchesotti L, Perronnin F. AVA: A large scale database for aesthetic visual analysis[C]. Rhode Island:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2012.
|
[29] |
Malu G, Bapi R, Indurkhya B. Learning photography aesthetics with deep CNNs[C]. Fort Wayne:Proceedings of Modern Artificial Intelligence and Cognitive Science, 2017.
|
[30] |
Zhu W, Liang S, Wei Y, et al. Saliency optimization from robust background detection[C]. Columbus:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2014.
|
[31] |
Li H, Lu H, Lin Z, et al. Inner and inter label propagation: salient object detection in the wild[J]. IEEE Transactions on Image Processing, 2015,24(4):3176-3186.
doi: 10.1109/TIP.83
|