电子科技 ›› 2021, Vol. 34 ›› Issue (3): 36-42.doi: 10.16180/j.cnki.issn1007-7820.2021.03.007
邵杭,王永雄,秦宇龙
收稿日期:
2019-12-12
出版日期:
2021-03-15
发布日期:
2021-03-10
作者简介:
邵杭(1993-),男,硕士研究生。研究方向:模式识别、数字图像处理与计算机视觉。|王永雄(1970-),男,博士,教授,博士生导师。研究方向:计算机视觉与智能机器人。|秦宇龙(1994-),男,硕士研究生。研究方向:深度学习与人体行为识别。
基金资助:
SHAO Hang,WANG Yongxiong,QIN Yulong
Received:
2019-12-12
Online:
2021-03-15
Published:
2021-03-10
Supported by:
摘要:
构图是决定数字图像美学质量的重要因素,而现有的计算机优化算法在这一领域还存在整体性、视觉平衡感不足等问题。针对这一问题,文中提出了一种基于深度学习模型的构图优化算法,将显著特征与改善视觉平衡相结合,实现了更符合图像美学的构图优化。文中卷积网络以VGG-16为主干,加权两项损失函数并以图像像素进行平均,可在训练后实现端到端的全分辨率显著性回归。定性对比和定量验证的实验结果表明,相较于传统优化方法,文中算法在改善视觉平衡方面具有明显优势,处理后的图像画面平衡感得到显著提升,更符合美学评价原则和人的视觉感受。
中图分类号:
邵杭,王永雄,秦宇龙. 基于深度学习与显著性的数字图像构图优化[J]. 电子科技, 2021, 34(3): 36-42.
SHAO Hang,WANG Yongxiong,QIN Yulong. Digital Image Composition Optimization Based on Salient Feature Algorithm[J]. Electronic Science and Technology, 2021, 34(3): 36-42.
[1] | Neumann L, Sbert M, Gooch B. Defining computational aesthetics[J]. Computational Aesthetics in Graphics, Visualization and Imaging, 2005(5):13-18. |
[2] | 王伟凝, 蚁静缄, 贺前华. 可计算图像美学研究进展[J]. 中国图象图形学学报, 2012,17(8):893-901. |
Wang Weining, Yi Jingjian, He Qianhua. Review for computational image aesthetics[J]. Journal of Image and Graphics, 2012,17(8):893-901. | |
[3] | Deng Y, Loy C, Tang X. Image aesthetic assessment: An experimental survey[J]. IEEE Signal Processing Magazine, 2017,34(4):80-106. |
[4] | 胡少聪. 基于深度学习的人脸识别方法研究[J]. 电子科技, 2019,32(6):82-86. |
Hu Shaocong. Research on face recognition based on deep learning[J]. Electronic Science and Technology, 2019,32(6):82-86. | |
[5] | Lu P, Zhang H, Peng X. Aesthetic guided deep regression network for image cropping[J]. Signal Processing Image Communication, 2019,77(6):1-10. |
[6] | Kong S, Shen X, Lin Z, et al. Photo aesthetics ranking network with attributes and content adaptation[C]. Amsterdam:Proceedings of European Conference on Computer Vision, 2016. |
[7] | Wang W, Shen J. Deep cropping via attention box prediction and aesthetics assessment[C]. Venice: Proceedings of IEEE International Conference on Computer Vision, 2017. |
[8] | Zhu J, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. Venice:Proceedings of IEEE International Conference on Computer Vision, 2017. |
[9] | Levada A. Closed-form Bayesian image denoising: Improving the adaptive Wiener filter through pairwise Gaussian-Markov random fields[J]. Communication in Statistics Simulation and Computation, 2019(7):1-25. |
[10] | Ignatov A, Kobyshev N, Timofte R, et al. DSLR-quality photos on mobile devices with deep convolutional networks[C]. Venice:Proceedings of IEEE International Conference on Computer Vision, 2017. |
[11] |
Yao L, Suryanarayan P, Qiao M, et al. Oscar:On-site composition and aesthetics feedback through exemplars for photographers[J]. International Journal of Computer Vision, 2012,96(9):353-383.
doi: 10.1007/s11263-011-0478-3 |
[12] |
顾婷婷, 郭延文, 殷昆燕. 结合浅景深与构图的图像质量评价[J]. 中国图象图形学学报, 2013,18(5):574-582.
doi: 10.11834/jig.20130512 |
Gu Tingting, Guo Yanwen, Yin Kunyan. Image quality assessment combining low DoF and composition[J]. Journal of Image and Graphics, 2013,18(5):574-582.
doi: 10.11834/jig.20130512 |
|
[13] | 袁小平, 王岗, 王晔枫, 等. 基于改进卷积神经网络的交通标志识别方法[J]. 电子科技, 2019,32(11):28-32. |
Yuan Xiaoping, Wang Gang, Wang Yefeng, et al. Traffic sign recognition method based on improved convolutional neural network[J]. Electronic Science and Technology, 2019,32(11):28-32. | |
[14] | 凌艳, 陈莹. 多尺度上下文信息增强的显著目标检测全卷积网络[J]. 计算机辅助设计与图形学学报, 2019,31(11):2007-2016. |
Ling Yan, Chen Ying. Salient object detection with multiscale context enhanced fully convolutional network[J]. Journal of Computer-Aided Design & Computer Graphics, 2019,31(11):2007-2016. | |
[15] | Bhattacharya S, Sukthankar R, Shah M. A framework for photo quality assessment and enhancement based on visual aesthetics[C]. Firenze:Proceedings of ACM International Conference on Multimedia, 2010. |
[16] |
Jin Y, Wu Q, Liu L. Aesthetic photo composition by optimal crop-and-warp[J]. Computers and Graphics, 2012,36(8):955-965.
doi: 10.1016/j.cag.2012.07.007 |
[17] | Guo Y, Liu M, Gu T, et al. Improving photo composition elegantly:Considering image similarity during composition optimization[J]. Computer Graphics Forum, 2012,31(2):193-202. |
[18] |
Zhang F, Wang M. Aesthetic image enhancement by dependence-aware object recomposition[J]. IEEE Transactions on Multimedia, 2013,15(7):1480-1490.
doi: 10.1109/TMM.2013.2268051 |
[19] | 王伟凝, 刘剑聪, 徐向民, 等. 基于构图规则的图像美学优化[J]. 华南理工大学学报(自然科学版), 2015(5):51-58. |
Wang Weining, Liu Jiancong, Xu Xiangmin, et al. Aesthetic enhancement of images based on photography composition guidelines[J]. Journal of South China University of Technology (Natural Science Edition), 2015(5):51-58. | |
[20] | 熊杨超. 图像美学评价及美学优化研究[D]. 广州:华南理工大学, 2015. |
Xiong Yangchao. Research on image aesthetic assessment and optimizing[D]. Guangzhou: South China University of Technology, 2015. | |
[21] | Chen J, Bai G, Liang S, et al. Automatic image cropping: A computational complexity study[C]. Las Vegas: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016. |
[22] | Chen Y, Huang T, Chang K, et al. Quantitative analysis of automatic image cropping algorithms: A dataset and comparative study[C]. Santa Rosa:Proceedings of IEEE Winter Conference on Applications of Computer Vision, 2017. |
[23] |
Wang W, Shen J, Ling H. A deep network solution for attention and aesthetics aware photo cropping[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019,41(9):1531-1544.
doi: 10.1109/TPAMI.34 |
[24] | 何援军. 透视和透视投影变换—论图形变换和投影的若干问题之三[J]. 计算机辅助设计与图形学学报, 2005,17(4):735-739. |
He Yuanjun. Perspective and its projection transformation[J]. Journal of Computer Aided Design and Computer Graphics, 2005,17(4):735-739. | |
[25] |
Liu T, Sun J, Zheng N, et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011,33(2):353-367.
pmid: 21193811 |
[26] | Ke Y, Tang X, Jing F. The design of high-level features for photo quality assessment[C]. New York:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2006. |
[27] | Luo W, Wang X, Tang X. Content-based photo quality assessment[J]. IEEE Transactions on Multimedia, 2013(5):1930-1943. |
[28] | Murray N, Marchesotti L, Perronnin F. AVA: A large scale database for aesthetic visual analysis[C]. Rhode Island:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2012. |
[29] | Malu G, Bapi R, Indurkhya B. Learning photography aesthetics with deep CNNs[C]. Fort Wayne:Proceedings of Modern Artificial Intelligence and Cognitive Science, 2017. |
[30] | Zhu W, Liang S, Wei Y, et al. Saliency optimization from robust background detection[C]. Columbus:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2014. |
[31] |
Li H, Lu H, Lin Z, et al. Inner and inter label propagation: salient object detection in the wild[J]. IEEE Transactions on Image Processing, 2015,24(4):3176-3186.
doi: 10.1109/TIP.83 |
[1] | 程晓雅,张雷. 基于深度学习的有遮挡人脸识别方法研究[J]. 电子科技, 2022, 35(1): 35-39. |
[2] | 赵崇,迟蒙蒙,储聪,张鹏. 导盲犬行走机构运动仿真及其视觉识别算法研究[J]. 电子科技, 2021, 34(9): 66-72. |
[3] | 马立新,豆晨飞,宋晨灿,杨天笑. 基于特征融合卷积神经网络的绝缘子无损检测[J]. 电子科技, 2021, 34(7): 26-30. |
[4] | 薛永杰,巨志勇. 基于改进AlexNet的鱼类识别算法[J]. 电子科技, 2021, 34(4): 12-17. |
[5] | 闫超,孙占全,田恩刚,赵杨洋,范小燕. 基于深度学习的医学图像分割技术研究进展[J]. 电子科技, 2021, 34(2): 7-11. |
[6] | 董波,周燕,王永雄. 基于渐进结构感受野和全局注意力的显著性检测[J]. 电子科技, 2021, 34(1): 23-30. |
[7] | 程俊华,曾国辉,刘瑾. 基于深度学习的复杂背景图像分类方法研究[J]. 电子科技, 2020, 33(12): 59-66. |
[8] | 邬倩,吴飞,骆立志. 基于深度学习的人体骨架动作识别[J]. 电子科技, 2020, 33(11): 79-83. |
[9] | 段雨佳,鞠婷. 基于深度学习的代码审查意见有效性评估[J]. 电子科技, 2020, 33(1): 39-45. |
[10] | 仝泽友,冯仕民,侯晓晴,丁恩杰. 基于安全帽佩戴检测的矿山人员违规行为研究[J]. 电子科技, 2019, 32(9): 26-31. |
[11] | 胡少聪. 基于深度学习的人脸识别方法研究[J]. 电子科技, 2019, 32(6): 82-86. |
[12] | 姜猛,王子牛,高建瓴. 基于异构数据联合训练的中文分词法[J]. 电子科技, 2019, 32(4): 29-33. |
[13] | 李荣瑞,施霖,赵薇. 基于卷积神经网络的少数民族头饰识别[J]. 电子科技, 2019, 32(2): 51-55. |
[14] | 孟昕. 基于深度学习的法律文书识别方法研究[J]. 电子科技, 2019, 32(12): 84-86. |
[15] | 袁小平,王岗,王晔枫,汪喆远,孙辉. 基于改进卷积神经网络的交通标志识别方法[J]. 电子科技, 2019, 32(11): 28-32. |
|