电子科技 ›› 2022, Vol. 35 ›› Issue (2): 52-58.doi: 10.16180/j.cnki.issn1007-7820.2022.02.009

• • 上一篇    下一篇

基于排列熵和支持向量机的轨枕病害诊断

邵志慧,杨俭,袁天辰,伍伟嘉   

  1. 上海工程技术大学 城市轨道交通学院,上海 201620
  • 收稿日期:2020-10-28 出版日期:2022-02-15 发布日期:2022-02-24
  • 作者简介:邵志慧(1995-),女,硕士研究生。研究方向:轨道结构智能监测和预警。|杨俭(1962-),男,博士,教授。研究方向:轨道车辆制动能量回收、列车运行的环境能源可再生利用、机电装备可再生能量回收技术、轨道车辆弓网关系。
  • 基金资助:
    国家自然科学基金(11802170);上海市晨光计划项目(18CG66);上海市自然科学基金(19ZR1421700)

Sleeper Diseases Diagnosis Based on Permutation Entropy and Support Vector Machine

SHAO Zhihui,YANG Jian,YUAN Tianchen,WU Weijia   

  1. School of Urban Railway Transportation,Shanghai University of Engineering Science,Shanghai 201620,China
  • Received:2020-10-28 Online:2022-02-15 Published:2022-02-24
  • Supported by:
    National Natural Science Foundation of China(11802170);Shanghai Chenguang Project(18CG66);Natural Science Foundation of Shanghai(19ZR1421700)

摘要:

文中提出了一种基于排列熵和支持向量机的轨枕病害诊断方法。该方法通过建立车辆-轨道耦合振动模型获取轨枕的振动加速度,利用排列熵算法提取轨枕不同病害下的振动响应特征指标,并以归一化后的排列熵特征指标集为输入。该方法基于遗传算法优化的支持向量机对轨枕服役状态进行诊断和分类,实现了对轨枕不同病害的诊断。数据仿真结果表明,该方法对轨枕病害识别准确率均能达到90%以上,对于部分轨道不平顺谱激励和列车速度下的服役状态,识别准确率能达到97.5%。该结果表明,文中所提方法能够有效地对轨枕病害进行诊断,为轨道结构服役状态的在线监测与智能预警提供了方法依据。

关键词: 振动响应, 轨枕病害, 特征提取, 排列熵, 归一化, 遗传算法, 支持向量机, 病害诊断

Abstract:

This study proposes a sleeper diseases diagnosis method based on permutation entropy and support vector machine. This method obtains the vibration acceleration of the sleeper by establishing a vehicle-track coupled vibration model, uses the permutation entropy algorithm to extract the vibration response characteristic indexes under different diseases of the sleeper, and takes the normalized permutation entropy characteristic index set as input. Based on the support vector machine optimized by genetic algorithm, this method diagnoses and classifies the service status of sleepers, and realizes the diagnosis of different diseases of sleepers. The simulation results show that the accuracy of the method for the identification of sleeper diseases can reach more than 90%, and the recognition accuracy can reach 97.5% for the part of track irregularity spectrum excitation and the service state of the train speed. Therefore, the proposed method can effectively diagnose sleeper diseases and provide a certain method basis for online monitoring and intelligent early warning of track structure service status.

Key words: vibration response, sleeper faults, feature extraction, permutation entropy, normalized, genetic algorithm, support vector machine, disease diagnosis

中图分类号: 

  • TP391.4